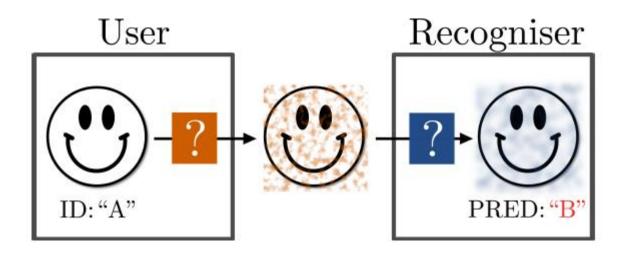
Adversarial Image Perturbation for Privacy Protection A Game Theory Perspective

Seong Joon Oh, Mario Fritz, Bernt Schiele Presenter: Yuxuan Mu

Background

- Recent adversarial image perturbations (AIP) confuse recognition systems effectively without unpleasant artifacts
- However, how to **evaluate the AIP** in particular when the choice of **counter measure is unknown**.



Background

- AIP: Carefully crafted **additive perturbations** on the image that confuses a convnet while being nearly invisible to human eyes
- Counter measure: **Simple image processing tactics** to counter the AIP effects (e.g. blurring by small amount).



Motivations

• Are AIPs still effective when counter measures are taken?

 Which is the best AIP strategy when the particular choice of counter measure is unknown?

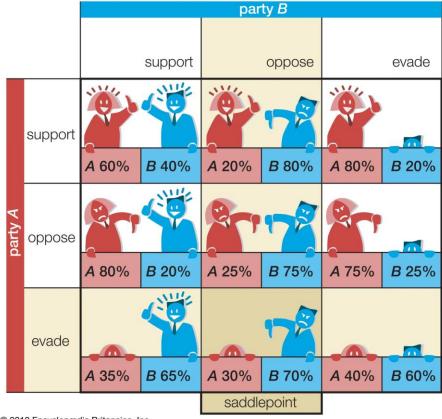
Game theory - Two Person Constant Sum Games

• The user-recognizer dynamics

• The optimal strategy for the user that assures an **upper bound** on the recognition rate independent of the recognizer's counter measure

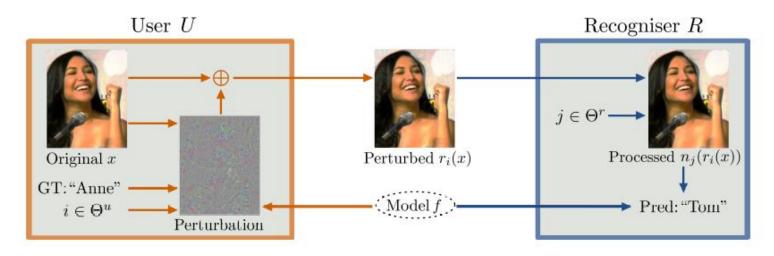
$$\underset{\theta^u}{\operatorname{arg\,min}} \max_{\theta^r} \sum_{i,j} \theta^u_i \theta^r_j p_{ij}$$

Payoff matrix with saddlepoint



© 2010 Encyclopædia Britannica, Inc.

- The user U and the recogniser R with designated strategy spaces, Θ^u and Θ^r .
- As a result of each player committing to strategies $i \in \Theta^u$ and $j \in \Theta^r$ respectively, R receives a payoff of p_{ij} , the recognition rate; U then receives a payoff of 1- p_{ij} , the mis-recognition rate.



Known model. Each player is aware that the opponent uses f. This may be unrealistic, but provides a good starting point. Relaxation of this assumption is discussed in §3.3.

Payoff. When the players commit to strategies $i \in \Theta^u$ and $j \in \Theta^r$, R's payoff is the recognition rate on the test set:

$$p_{ij} = \underset{(\hat{x}, \hat{y}) \sim D}{\mathbb{P}} \left[\underset{y}{\operatorname{arg max}} f^{y} \left(n_{j} \left(r_{i} \left(\hat{x} \right) \right) \right) = \hat{y} \right]$$
 (3)

Recogniser strategy

Translation	Gaussian additive noise	Blurring	Cropping & re-sizing	Combinations
Т	N	В	С	TNBC

 Assume a finite strategy space, so we only consider a combination TNBC

Adversarial Image Perturbation Strategies

Fast Gradient Vector	Fast Gradient Sign	Gradient Ascent	Basic Iterative	DeepFool	
FGV	FGS	GA	ВІ	DF	

$$\max_{t} \mathcal{L}\left(f\left(x+t\right), y\right) \quad \text{s.t. } ||t||_{2} \le \epsilon$$

Adversarial Image Perturbation Strategies

Fast Gradient Vector	Fast Gradient Sign	Gradient Ascent	Basic Iterative	DeepFool	GA– Maximal Among Non-GT
FGV	FGS	GA	ВІ	DF	GAMAN

$$\max_{t} \mathcal{L}\left(f\left(x+t\right), y\right) \quad \text{s.t. } ||t||_{2} \le \epsilon$$

• e.g. Fast Gradient Vector: one step gradient ascent

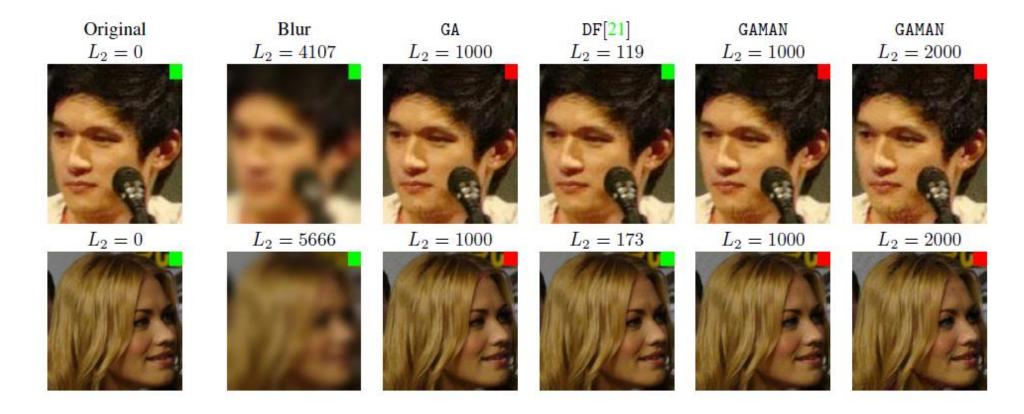
$$t^{\star} = -\gamma \nabla \mathcal{L}(x)$$

Adversarial Image Perturbation Strategies

Variants	Loss \mathcal{L}	condition	Step size
FGS[6]	$-\log \hat{f}^y$	1 iteration	Fixed
FGV[31]	$-\log \hat{f}^y$	1 iteration	Fixed
BI[12]	$-\log \hat{f}^y$	K iterations	Fixed
GA	$-\log \hat{f}^y$	K iterations	Fixed
DF[21]	$f^{y^c} - f^y$	K it. \vee fooled	Adaptive
GAMAN	$f^{y^{\star}} - f^{y}$	K iterations	Fixed

Experiments

Person identification



Experiments

• For each column (row), U's (R's) optimal strategy is marked orange (blue).

Perturb	Ø	Proc	Т	N	В	C	TNBC
None	87.8	87.8	87.6	64.0	81.2	85.4	87.3
BI[12]	0.0	8.3	15.8	16.8	28.6	27.4	17.6
GA	0.0	8.6	13.2	14.1	28.4	23.7	16.4
DF[21]	0.0	51.8	75.6	56.5	72.5	76.9	75.5
GAMAN	0.0	4.0	6.6	15.0	22.2	16.7	9.9

Table 3: Robustness analysis of AIPs on GoogleNet. AIPs are restricted to to $||\cdot||_2 \le 1000$. Proc indicates the resizing and quantisation needed to convert AIP outputs to image files. (T, N, B, C) = (Translate, Noise, Blur, Crop).

Experiments - Vaccination

• For each column (row), U's (R's) optimal strategy is marked orange (blue).

$$\mathcal{L}(n_j(x+t))$$

$$\underset{\theta^u}{\operatorname{arg\,min}} \max_{\theta^r} \sum_{i,j} \theta_i^u \theta_j^r p_{ij}$$

$$\theta^{u\star} = (/B:61\%,/TNBC:39\%)$$

	rtee og moer o						
User Θ^u	Proc	Τ	N	В	С	TNBC	
GAMAN	4.0	6.6	15.0	22.2	16.7	9.9	
/ T	2.5	2.3	11.6	18.5	7.2	4.9	
/N	5.8	7.6	4.6	23.6	16.6	9.1	
/B	0.4	0.8	8.6	5.8	3.1	1.4	
/C	2.6	2.2	11.8	18.1	3.4	4.3	
/TNBC	0.7	0.9	5.2	9.5	3.2	2.0	

Recogniser Θ^r

Table 4: Recogniser's payoff table p_{ij} , $i \in \Theta^u$ and $j \in \Theta^r$.

Experiments

Selective AIP

Setup			${\cal M}$ ave	raged	${\cal B}$ averaged	
\mathcal{M}	\mathcal{B}	L_2	w/o AIP	w/ AIP	w/o AIP	w/ AIP
{G}	Ø	1000	87.8	4.0	-	-
$\{G\}$	$\{A\}$	1000	87.8	8.7	83.8	97.9
${A,R}$	$\{V\!,\!G\}$	1000	87.4	17.7	87.0	97.7
$\{A,R\}$	$\{V\!,\!G\}$	2000	87.4	3.8	87.0	97.8

Table 5: Selective AIPs. AIPs are crafted to confuse \mathcal{M} leaving \mathcal{B} intact. [A,V,G,R] = [AlexNet, VGG, GoogleNet, ResNet152]. GAMAN has been used in all experiments. Reported performances are after Proc.

Thanks

Yuxuan Mu