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3D Human Pose Estimation from Monocular Video

Background:

Progress on single-image 3D pose and shape
estimation (w/ sufficient 3D annotations)
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Challenge:
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Inaccurate and unnatural motion sequences on
video
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E.g. Unreal motion, Jitter, Penetration

-> Physical Awareness

An example from VIBE*



PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time,
SIGGRAPH Asia 2020

Contributions:

e Thefirst algorithm for physically plausible, real-time and marker-less human 3D motion capture

e ACNN todetect foot contact and motion states from images

e Pose optimization framework with a human parameterised by a torque-controlled simulated
character



Approach
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Approach

Stage II: Foot Contact and Motion State Detection Stage I1: Foot Contact and Motion State Prediction
Foot Contact -> simulator

Motion State (stationary or not) -> Stage Il1(i) Pose Correction

% . Centre of Gravity
(CoG)

[+ Base of Support

I

|

' °

: - @ :Projected CoG
I

|

onto ground



Approach

Stage IlI(i) Pose Correction

Performs until 1) the pose becomes non-stationary or 2) CoG
projects inside BoS

a) balanced posture : b) unbalanced posture
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Approach M(Q)g—7 = JTGA —c¢(q,q) Physical Prior

Stage Ill Physics-Based Global Pose Optimisation
. __ t A
e Acceleration 9des = qkin + kP (qkin q) + kd (qkin q)

e Ground Reaction Force (GRF) Estimation
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Approach M(Q)g—7 = JTGA —c¢(q,q) Physical Prior

Stage Ill Physics-Based Global Pose Optimisation
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Results

Time

Frontal View
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SimPoE: Simulated Character Control for 3D Human Pose Estimation,
ICCV 2021

Motivation:

e Physical artifacts generated by kinematic-based (body motion without physical forces) pose
estimation methods

e Current physical-based methods:
o  high latency, computationally intensive
o differentiable simulator -> need to be simple -> approximation errors
o  separate stage without learning targets
e Ajointlearning framework that tightly integrates image-based kinematic inference and

physics-based dynamics modeling
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Approach
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Output: Simulated Pose
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Figure 2. Overview of our SimPoE framework. (a) SimPoE is a physics-based causal temporal model. (b) At each frame (30Hz), the
policy network Fj use the current pose gq,, velocities q,, and the next frame’s estimated kinematic pose g, , ; and keypoints (&¢+1, Ct+1)
to generate an action a, which controls the character in the physics simulator (450Hz) via PD controllers to produce the next pose g, , ;.
(c) The policy network F, outputs the mean action @; £ (ae, 7, Xi, Xf). The kinematic refinement unit iteratively refines a kinematic
pose estimate by learning pose updates. The refined pose aﬁ:?l is used by the control generation unit to produce the mean action @:.
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Approach

Output: Simulated Pose

1. Create acharacter from SMPL in the simulator
a.  Using SMPL weights to separate body parts
b.  Convex hull & constant density assumption -> Body Parts Geometry
c. Pose:rotations
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Approach

2. Simulated Character Control (RL policy solver: PPO 2017)

Definition:
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Approach

2. Simulated Character Control (RL policy solver: PPO 2017)

Definition: Policy & Actions

Commonly, the action is torque T+o0 be applied to the each joint (non-root)

Using Proportional derivative (PD) controllers:
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Approach

2. Simulated Character Control (RL policy solver: PPO 2017)
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Approach

3. Kinematics-Aware Policy

Gaussian policy mg(a¢|s:) = N(a;, X)
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Results

Human3.6M
Method Physics MPJPE | PA-MPIJPE | Accell FS| GPJ
VIBE [ ] X 61.3 43.1 152 15.1 126
NeurGD* [ ] X 573 422 142 167 244
PhysCap [ ] v 113.0 68.9 = = =
EgoPose [ 7] v 130.3 79.2 3.3 59 35
SimPoE (Ours) v 56.7 41.6 6.7 34 1.6
In-House Motion Dataset

Method Physics MPJPE | PA-MPIPE | Accel] FS| GPJ
KinPose X 49.7 40.4 128 64 39
NeurGD* [ ] X 36.7 30.9 162 7.7 3.6
EgoPose [ 7] v 202.2 131.4 326 22 05
SimPoE (Ours) v 26.6 21.2 84 0.5 0.1
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Results
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Limitation

Depends on 3D scene modeling that hinders its evaluation on in-the-wild datasets.

Its physical awareness mainly tackle the interaction between human and scene.
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Differentiable Dynamics for Articulated 3d Human Motion Reconstruction,
CVPR 2022
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Differentiable Dynamics for Articulated 3d Human Motion Reconstruction,

CVPR 2022
Method Body | Cont. | DP | Trained | T, | NoRF
Rempe et al. [39] Fixed | Feet X | Contacts | X v
PhysCap [42] Fixed | Feet | v | Contacts | v X
SimPoE [59] Adapt | Full X Yes X X
Shimada et al. [41] | Fixed | Feet | v/ Yes v X
Xie et al. [55] Fixed | Feet ve No X v
Dynamics [15] Adapt | Full X Prior v v
DiffPhy Adapt | Full v No v v
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Results

Dataset Model MPJPE-G | MPJPE | MPJPE-PA | MPJPE-2d | TV | Foot skate (%)
VIBE [24] 207.7 68.6 43.6 16.4 0.32 27.4
PhysCap [47] - 97.4 65.1 - - -
SimPoE [59] - 56.7 41.6 - - -
Human3.6M | Shimada et al. [4]] - 76.5 58.2 - - -
Xie et al. [55] - 68.1 - - - -
Kinematics 145.3 83.0 554 13.4 0.34 47.5
DiffPhy 139.1 81.7 55.6 13.1 0.20 7.4
AIST Kinematics 155.7 107.4 66.9 10.4 0.52 50.9
DiffPhy 150.2 105.5 66.0 12.1 0.44 19.6
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Summary

Modeling scene interaction
Advanced simulators
Advanced learning strategies

Create a Digital Twin
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