Physics-based 3D Human Pose Estimation from Monocular Video

Yuxuan Mu

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time, SIGGRAPH Asia 2020

SimPoE: Simulated Character Control for 3D Human Pose Estimation, ICCV 2021

Differentiable Dynamics for Articulated 3d Human Motion Reconstruction, CVPR 2022

3D Human Pose Estimation from Monocular Video

Background:

Progress on single-image 3D pose and shape estimation (w/ sufficient 3D annotations)

Challenge:

Inaccurate and unnatural motion sequences on video

E.g. Unreal motion, Jitter, Penetration

-> Physical Awareness

An example from VIBE*

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time, SIGGRAPH Asia 2020

Contributions:

- The first algorithm for physically plausible, real-time and marker-less human 3D motion capture
- A CNN to detect foot contact and motion states from images
- Pose optimization framework with a human parameterised by a torque-controlled simulated character

Stage II: Foot Contact and Motion State Detection

Foot Contact -> simulator

Motion State (stationary or not) -> Stage III(i) Pose Correction

Stage III(i) Pose Correction

Performs until 1) the pose becomes non-stationary or 2) CoG projects inside BoS

Approach $\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} - \boldsymbol{\tau} = \mathbf{J}^T \mathbf{G} \boldsymbol{\lambda} - \mathbf{c}(\mathbf{q}, \dot{\mathbf{q}})$ Physical Prior

Stage III Physics-Based Global Pose Optimisation

- Acceleration $\ddot{\mathbf{q}}_{des} = \ddot{\mathbf{q}}_{kin}^t + k_p (\mathbf{q}_{kin}^t \mathbf{q}) + k_d (\dot{\mathbf{q}}_{kin}^t \dot{\mathbf{q}})$
- Ground Reaction Force (GRF) Estimation

Approach $\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} - \boldsymbol{\tau} = \mathbf{J}^T \mathbf{G} \boldsymbol{\lambda} - \mathbf{c}(\mathbf{q}, \dot{\mathbf{q}})$ Physical Prior

Stage III Physics-Based Global Pose Optimisation

Physics-Based Pose Optimisation

SimPoE: <u>Simulated Character Control</u> for 3D Human Pose Estimation, ICCV 2021

Motivation:

- Physical artifacts generated by kinematic-based (body motion without physical forces) pose estimation methods
- Current physical-based methods:
 - high latency, computationally intensive
 - differentiable simulator -> need to be simple -> approximation errors
 - separate stage without learning targets
- A joint learning framework that tightly integrates image-based kinematic inference and physics-based dynamics modeling

Figure 2. Overview of our SimPoE framework. (a) SimPoE is a physics-based causal temporal model. (b) At each frame (30Hz), the policy network \mathcal{F}_{θ} use the current pose q_t , velocities \dot{q}_t , and the next frame's estimated kinematic pose \tilde{q}_{t+1} and keypoints $(\check{x}_{t+1}, c_{t+1})$ to generate an action a_t , which controls the character in the physics simulator (450Hz) via PD controllers to produce the next pose q_{t+1} . (c) The policy network \mathcal{F}_{θ} outputs the mean action $\bar{a}_t \triangleq (\bar{u}_t, \bar{\eta}_t, \bar{\lambda}_t^p, \bar{\lambda}_t^d)$. The kinematic refinement unit iteratively refines a kinematic pose estimate by learning pose updates. The refined pose $\tilde{q}_{t+1}^{(n)}$ is used by the control generation unit to produce the mean action \bar{a}_t .

- Create a character from SMPL in the simulator 1.
 - Using SMPL weights to separate body parts a.
 - Convex hull & constant density assumption -> Body Parts Geometry b.
 - Pose: rotations C.

Output: Simulated Pose

2. Simulated Character Control (RL policy solver: PPO 2017)

Definition:

States
$$oldsymbol{s}_t riangleq (oldsymbol{q}_t, \dot{oldsymbol{q}}_t, \widetilde{oldsymbol{q}}_{t+1}, oldsymbol{\check{x}}_{t+1}, oldsymbol{c}_{t+1})$$

 $egin{aligned} oldsymbol{q}_t & ext{Current pose} \ oldsymbol{\dot{q}}_t & ext{Joint velocities} \ oldsymbol{\widetilde{q}}_{t+1} & ext{Initial kinematic pose} \ oldsymbol{\widetilde{x}}_{t+1}, oldsymbol{c}_{t+1} & ext{Keypoints \& conf} \end{aligned}$

2. Simulated Character Control (RL policy solver: PPO 2017)

Definition: Policy & Actions

Commonly, the action is torque τ_t o be applied to the each joint (non-root)

Using Proportional derivative (PD) controllers:

$$egin{aligned} oldsymbol{ au}_t &= oldsymbol{k}_{ extsf{p}} \circ (oldsymbol{u}_t - oldsymbol{q}_t^{ extsf{nr}}) - oldsymbol{k}_{ extsf{d}} \circ \dot{oldsymbol{q}}_t^{ extsf{nr}} \ oldsymbol{k}_{ extsf{p}} &= \lambda_{tj}^{ extsf{p}} oldsymbol{k}_{ extsf{p}}', \quad oldsymbol{k}_{ extsf{d}} &= \lambda_{tj}^{ extsf{d}} oldsymbol{k}_{ extsf{d}} \ oldsymbol{a}_t &\triangleq (oldsymbol{u}_t, oldsymbol{\eta}_t, oldsymbol{\lambda}_t^{ extsf{p}}, oldsymbol{\lambda}_t^{ extsf{d}}) \end{aligned}$$

Detector

Keypoints & Confidence

 \check{x}_{t+1}, c_{t+1} Keypoint

Next Pose $oldsymbol{q}_{t+1}$

Current

Character Pose & Vel

 q_t, \dot{q}_t

Physics

Simulator Torques ${m au}_t$

PD controllers

Kinematics-

Aware Policy

Action a_t

2. Simulated Character Control (RL policy solver: PPO 2017)

Definition: **Reward** $r_{t} = r_{t}^{p} \cdot r_{t}^{\vee} \cdot r_{t}^{j} \cdot r_{t}^{k}$ $r_{t}^{p} = \exp\left[-\alpha_{p}\left(\sum_{j=1}^{J} \|\boldsymbol{o}_{t}^{j} \ominus \widehat{\boldsymbol{o}}_{t}^{j}\|^{2}\right)\right]$ $r_{t}^{j} = \exp\left[-\alpha_{j}\left(\sum_{j=1}^{J} \|\boldsymbol{X}_{t}^{j} - \widehat{\boldsymbol{X}}_{t}^{j}\|^{2}\right)\right]$ $r_{t}^{k} = \exp\left[-\alpha_{k}\left(\sum_{j=1}^{J} \|\boldsymbol{x}_{t}^{j} - \widehat{\boldsymbol{x}}_{t}^{j}\|^{2}\right)\right]$

3. Kinematics-Aware Policy

Gaussian policy $\pi_{\theta}(\boldsymbol{a}_t | \boldsymbol{s}_t) = \mathcal{N}(\overline{\boldsymbol{a}}_t, \boldsymbol{\Sigma})$

$$\overline{oldsymbol{a}}_t = \mathcal{F}_{ heta}\left(oldsymbol{q}_t, \dot{oldsymbol{q}}_t, \widetilde{oldsymbol{q}}_{t+1}, \widecheck{oldsymbol{x}}_{t+1}, oldsymbol{c}_{t+1}
ight)$$

$$egin{aligned} \widetilde{oldsymbol{q}}_{t+1}^{(n)} &= \mathcal{R}_{ heta}\left(\widetilde{oldsymbol{q}}_{t+1}, \widecheck{oldsymbol{x}}_{t+1}, oldsymbol{c}_{t+1}
ight), \ (\delta \overline{oldsymbol{u}}_t, \overline{oldsymbol{\eta}}_t, \overline{oldsymbol{\lambda}}_t^{ ext{p}}, \overline{oldsymbol{\lambda}}_t^{ ext{d}}) &= \mathcal{G}_{ heta}\left(\widetilde{oldsymbol{q}}_{t+1}^{(n)}, oldsymbol{q}_t, \dot{oldsymbol{q}}_t
ight), \ \overline{oldsymbol{u}}_t &= \widetilde{oldsymbol{q}}_{t+1}^{(n)} + \delta \overline{oldsymbol{u}}_t \,. \end{aligned}$$

Results

Human3.6M							
Method	Physics	$\text{MPJPE}\downarrow$	PA-MPJPE \downarrow	Accel \downarrow	$FS\downarrow$	$\mathrm{GP}{\downarrow}$	
VIBE [21]	X	61.3	43.1	15.2	15.1	12.6	
NeurGD* [51]	×	57.3	42.2	14.2	16.7	24.4	
PhysCap [50]	1	113.0	68.9	-	-	_ >	
EgoPose [65]	1	130.3	79.2	31.3	5.9	3.5	
SimPoE (Ours)	1	56.7	41.6	6.7	3.4	1.6	
In-House Motion Dataset							
Method	Physics	MPJPE \downarrow	PA-MPJPE ↓	Accel \downarrow	$FS\downarrow$	$\mathrm{GP}\downarrow$	
KinPose	×	49.7	40.4	12.8	6.4	3.9	
NeurGD* [51]	×	36.7	30.9	16.2	7.7	3.6	
EgoPose [65]	1	202.2	131.4	32.6	2.2	0.5	
SimPoE (Ours)	1	26.6	21.2	8.4	0.5	0.1	

Results

Limitation

Depends on 3D scene modeling that hinders its evaluation on in-the-wild datasets.

Its physical awareness mainly tackle the interaction between human and scene.

Differentiable Dynamics for Articulated 3d Human Motion Reconstruction, CVPR 2022

Differentiable Dynamics for Articulated 3d Human Motion Reconstruction, CVPR 2022

Method	Body	Cont.	DP	Trained	$\mid \mathbf{T}_{g}$	No RF
Rempe <i>et al</i> . [39]	Fixed	Feet	X	Contacts	X	1
PhysCap [42]	Fixed	Feet	1	Contacts	1	X
SimPoE [59]	Adapt	Full	X	Yes	X	×
Shimada et al. [41]	Fixed	Feet	1	Yes	1	X
Xie et al. [55]	Fixed	Feet	1	No	X	1
Dynamics [15]	Adapt	Full	X	Prior	1	1
DiffPhy	Adapt	Full	1	No	1	1

Results

Dataset	Model	MPJPE-G	MPJPE	MPJPE-PA	MPJPE-2d	TV	Foot skate (%)
Human3.6M	VIBE [24]	207.7	68.6	43.6	16.4	0.32	27.4
	PhysCap [42]	-	97.4	65.1	-	-	-
	SimPoE [59]	-	56.7	41.6	-	-	-
	Shimada et al. [41]	-	76.5	58.2	-	-	-
	Xie et al. [55]	-	68.1	-	-	-	-
	Kinematics	145.3	83.0	55.4	13.4	0.34	47.5
	DiffPhy	139.1	81.7	55.6	13.1	0.20	7.4
AIST	Kinematics	155.7	107.4	66.9	10.4	0.52	50.9
	DiffPhy	150.2	105.5	66.0	12.1	0.44	19.6

Summary

Modeling scene interaction

Advanced simulators

Advanced learning strategies

Create a Digital Twin

Thanks