Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ze Liu, Yutong Lin, Yue Cao1, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,Baining Guo Presenter: Yilin Wang 2022/3/29

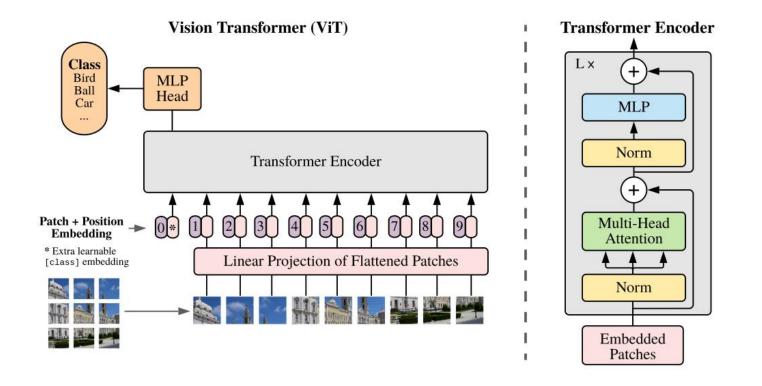
Background

- ViT (2020)
 - Standard Transformer
 - Global instead of local

>single low resolution(14 x 14 / 16 x 16 patches)

- semantic segmention
- object detection

➤quadratic complexity



$$\mathbf{z}_{0} = [\mathbf{x}_{\text{class}}; \mathbf{x}_{p}^{1} \mathbf{E}; \mathbf{x}_{p}^{2} \mathbf{E}; \cdots; \mathbf{x}_{p}^{N} \mathbf{E}] + \mathbf{E}_{pos}, \qquad \mathbf{E} \in \mathbb{R}^{(P^{2} \cdot C) \times D}, \ \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D}$$
(1)

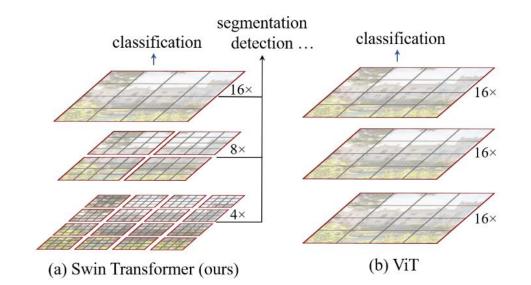
$$\mathbf{z}_{\ell}' = \text{MSA}(\text{LN}(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1}, \qquad \ell = 1 \dots L$$
(2)

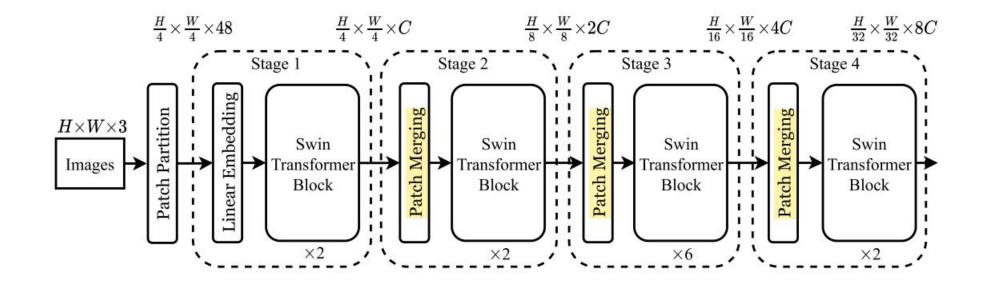
$$\mathbf{z}_{\ell} = \text{MLP}(\text{LN}(\mathbf{z}_{\ell}')) + \mathbf{z}_{\ell}', \qquad \ell = 1 \dots L$$
(3)

$$\mathbf{y} = \text{LN}(\mathbf{z}_{L}^{0})$$
(4)

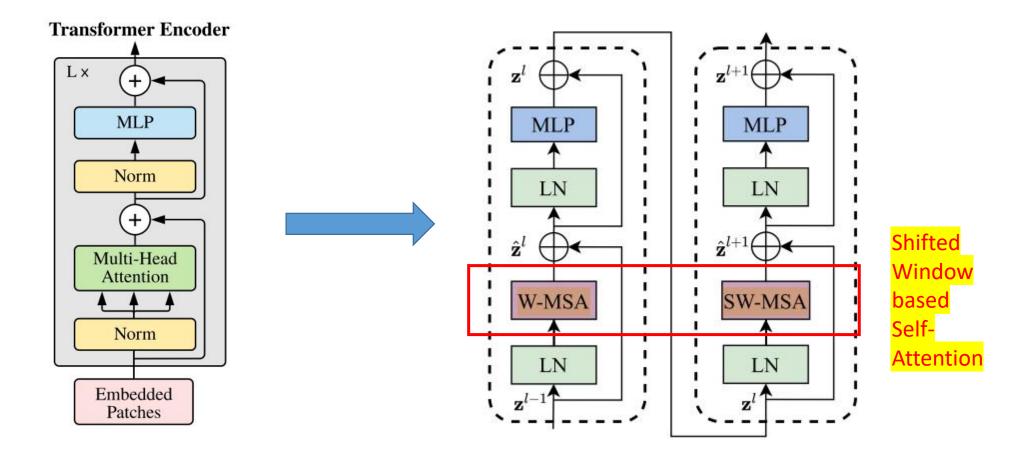
Hierarchical Architecture

- Patch Partition (P=4)
- Patch Merging * 3

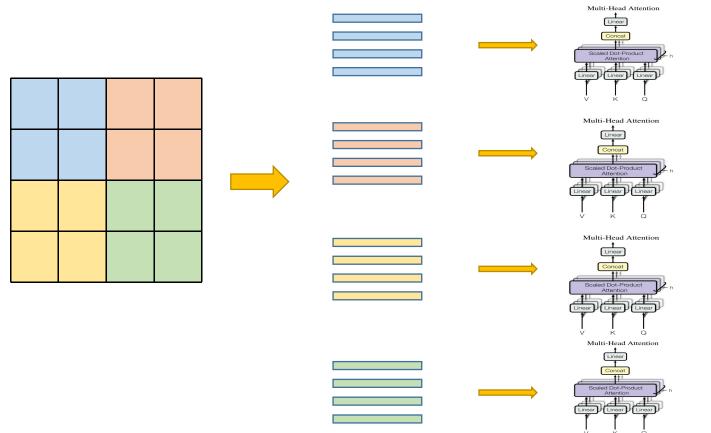


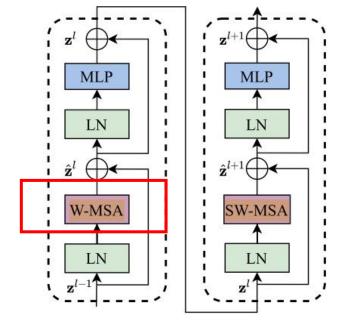


Swin Transformer Block

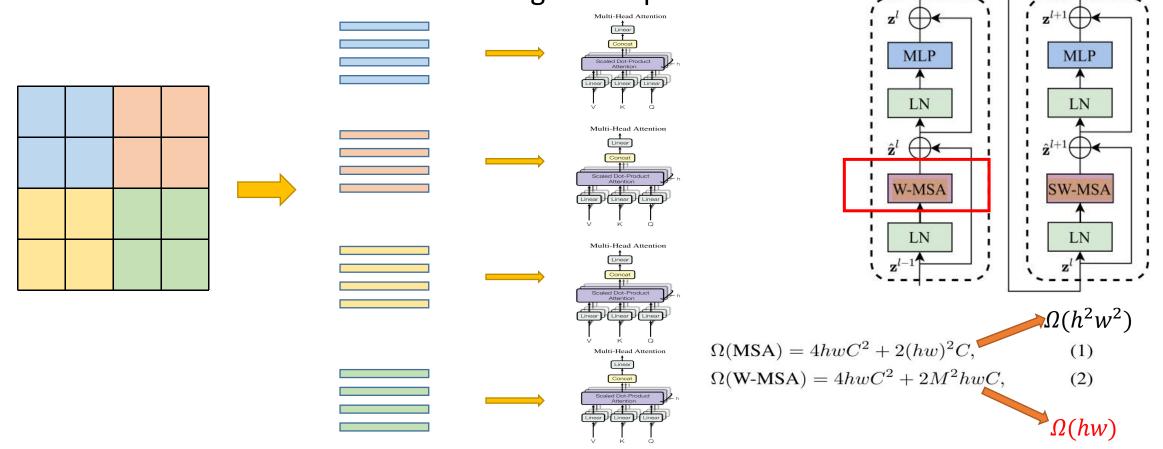


- Self-attention in non-overlapped windows (W-MSA)
 - Attention in local windows containing M x M patches

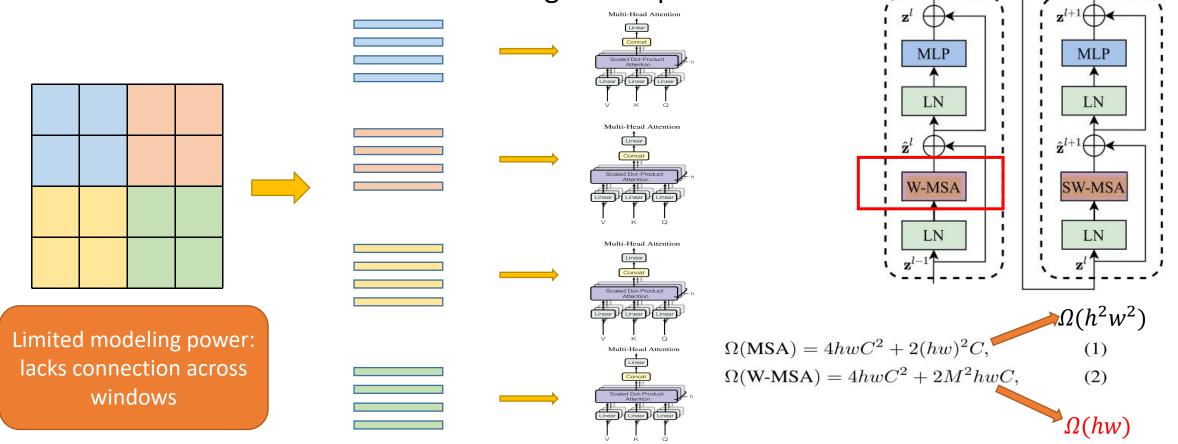




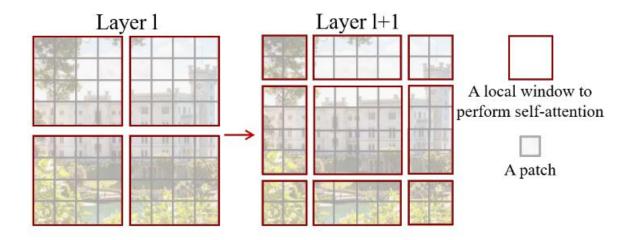
- Self-attention in non-overlapped windows (W-MSA)
 - Attention in local windows containing M x M patches

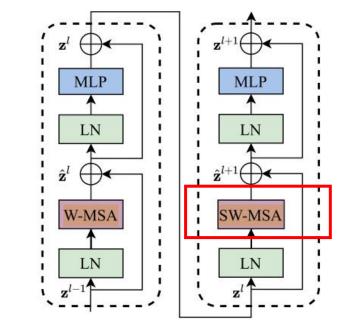


- Self-attention in non-overlapped windows (W-MSA)
 - Attention in local windows containing M x M patches

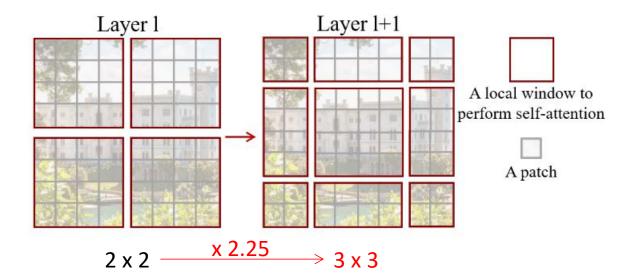


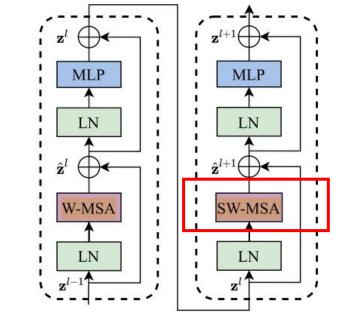
- Shifted windows partitioning (SW-MSA)
 - Shift the regular windows of W-MSA by $\left(\left| \frac{M}{2} \right|, \left| \frac{M}{2} \right| \right)$





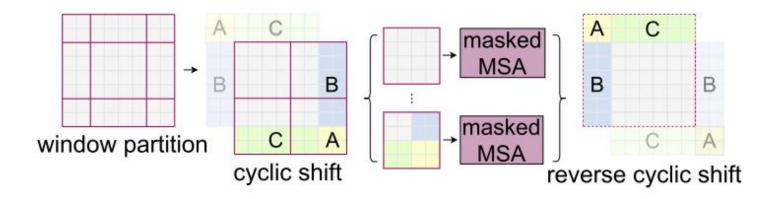
- Shifted windows partitioning (SW-MSA)
 - Shift the regular windows of W-MSA by $\left(\left| \frac{M}{2} \right|, \left| \frac{M}{2} \right| \right)$

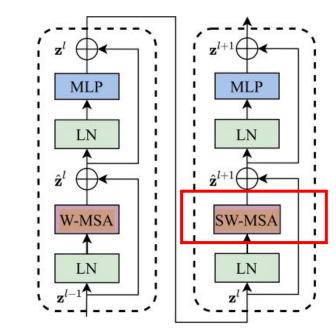




Considerable increase in the amount of windows

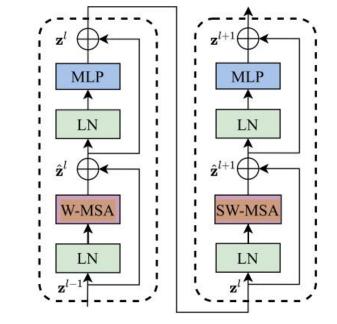
- Efficient batch computation for shifted configuration
 - <u>masked-MSA</u>: limit self-attention computation within only adjacent sub-windows
 - Maintain the number of batched windows as the same as that of regular window partitioning



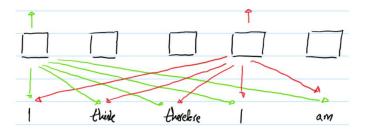


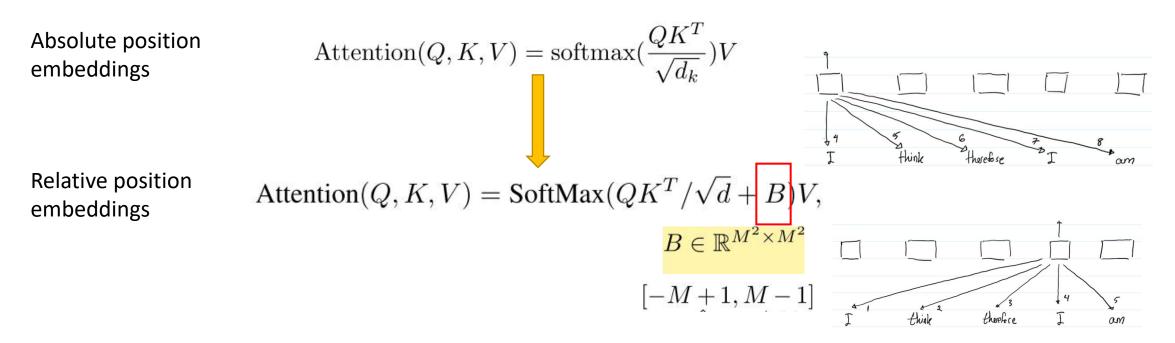
- Shifted window partitioning in successive blocks
 - Alternates between two partitioning configurations

$$\begin{split} \hat{\mathbf{z}}^{l} &= \text{W-MSA}\left(\text{LN}\left(\mathbf{z}^{l-1}\right)\right) + \mathbf{z}^{l-1}, \\ \mathbf{z}^{l} &= \text{MLP}\left(\text{LN}\left(\hat{\mathbf{z}}^{l}\right)\right) + \hat{\mathbf{z}}^{l}, \\ \hat{\mathbf{z}}^{l+1} &= \text{SW-MSA}\left(\text{LN}\left(\mathbf{z}^{l}\right)\right) + \mathbf{z}^{l}, \\ \mathbf{z}^{l+1} &= \text{MLP}\left(\text{LN}\left(\hat{\mathbf{z}}^{l+1}\right)\right) + \hat{\mathbf{z}}^{l+1}, \end{split}$$



• Relative position bias





Results

(a) Regu	lar In	ageNet-	1K trai	ned models	0
method	DILC	#param.	FLOPs	throughput (image / s)	1000
RegNetY-4G [44]	224^{2}	21M	4.0G	1156.7	80.0
RegNetY-8G [44]	224^{2}	39M	8.0G	591.6	81.7
RegNetY-16G [44]	224^{2}	84M	16.0G	334.7	82.9
ViT-B/16 [19]	384 ²	86M	55.4G	85.9	77.9
ViT-L/16 [19]	384^{2}	307M	190.7G	27.3	76.5
DeiT-S [57]	224^{2}	22M	4.6G	940.4	79.8
DeiT-B [57]	224^{2}	86M	17.5G	292.3	81.8
DeiT-B [57]	384^{2}	86M	55.4G	85.9	83.1
Swin-T	224^{2}	29M	4.5G	755.2	81.3
Swin-S	224^{2}	50M	8.7G	436.9	83.0
Swin-B	224^{2}	88M	15.4G	278.1	83.5
Swin-B	384^{2}	88M	47.0G	84.7	84.5
(b) Ima	ageNe	t-22K pr	e-traine	d models	
method	image size	#param.	FLOPs	throughput (image / s)	
R-101x3 [34]	384^{2}	388M	204.6G	-	84.4
R-152x4 [34]	480^{2}	937M	840.5G		85.4
ViT-B/16 [19]	384^{2}	86M	55.4G	85.9	84.0
ViT-L/16 [19]	384^{2}	307M	190.7G	27.3	85.2
Swin-B	224^{2}	88M	15.4G	278.1	85.2
Swin-B	384^{2}	88M	47.0G	84.7	86.4
Swin-L	384^{2}	197M	103.9G	42.1	87.3

Table 1. Comparison of different backbones on ImageNet-1K classification. Throughput is measured using the GitHub repository of [62] and a V100 GPU, following [57].

It ImageNetRepPoint(a) top-1 acc.Relation84.4Detect85.4YOLO84.0Copy-85.2X101-685.2Swin-F86.4Swin-L87.3Swin-LNet-1K clas-Table 2.Ib repositorytation.produce

-				ous f		wor	ks					
Meth	od	Backb	one	AP ^{box}	AP ₅₀	AF	box 75	#pa	ram. I	FLO	Ps	FPS
Casca	de	R-5	0	46.3	64.3	3 50).5	82	2M	739	G	18.0
Mask R-	CNN	Swin	-T	50.5	69.3	3 54	1.9	86	5M	745	G	15.3
ATSS R-5 Swin		R-5	0	43.5	61.9) 47	7.0	32	2M	205	G	28.3
		-T	47.2	66.5	5 51	1.3	36	6M	215	G	22.3	
D D		R-5	0	46.5	64.6	5 50).3	42	2M	274	G	13.6
RepPoin	its v Z	Swin	-T	50.0	68.5	5 54	1.2	45	5M	283	G	12.0
Spars	se	R-5	0	44.5	63.4	48	3.2	10	6M	166	G	21.0
R-CN	IN	Swin	-T	47.9	67.3	5 52	2.3	11	0M	172	G	18.4
(b) '	Vario	us bac	kboi	ies w.	. Cas	cade	M	ask	R-CN	IN		
		AP ₅₀									Ps	FPS
DeiT-S [†]	48.0	67.2	51.7			4.2	44		80M			10.4
R50	46.3	64.3	50.5	40.	1 6	1.7	43	.4	82M	739	G	18.0
Swin-T	50.5	69.3	54.9	43.	7 6	6.6	47	.1	86M	745	G	15.3
X101-32	48.1	66.5	52.4	41.	6 6	3.9	45	.2	101M	819	G	12.8
Swin-S	51.8	70.4	56.3	44.	7 6	7.9	48	.5	107M	838	G	12.0
X101-64	48.3	66.4	52.3	41.	7 6	4.0	45	.1	140M	972	G	10.4
Swin-B	51.9	70.9	56.5	45.	0 6	8.4	48	.7	145M	982	G	11.6
		(c)	Syst	em-le	vel C	omp	oari	son	0			
			m	ini-va			st-de		L		TT.	OD.
M	ethod		AP^b	ox AP	mask	APbo	× Al	Pmasl	#par	am.	FL	.OPs
RepPoir	ntsV2	* [12]	-		-	52.1		-	2 e			-
GCI	Net* [7]	51.	8 4	4.7	52.3	4	5.4	4		10	41G
Relation	Net++	+* [13]	-		-	52.7		-	-			-
Detect	oRS*	[42]	-		- 1	55.7	4	8.5		e i		-
YOLO	v4 P7	* [4]	100		2	55.8		2	1 2			2
Copy-	paste	[23]	55.	9 4'	7.2	56.0	4	7.4	185	5M	14	40G
X101-6	4 (HT	C++)	52.	3 40	5.0	-		-	155	5M	10	33G
Swin-B	(HT	C++)	56.	4 49	9.1			-	160)M	10	43G
Swin-L	. (HT	C++)	57.	1 49	9.5	57.7	5	0.2	284	M	14	70G
Swin-L			58.		100.00	58.7		1.1	284			-
Table 2.	Resul	ts on C	COCO) obje	ect de	tecti	on a	and	instan	ice s	egi	nen-

Table 2. Results on COCO object detection and instance segmentation. [†]denotes that additional decovolution layers are used to produce hierarchical feature maps. * indicates multi-scale testing.

Object Detection

ADE	20K	val	test	#param.	EL OD-	EDC	
Method	Backbone	mIoU	score	#param.	FLOPS	rrs	
DLab.v3+[11]	ResNet-101	44.1	17	63M	1021G	16.0	
DNL [65]	ResNet-101	46.0	56.2	69M	1249G	14.8	
OCRNet [67]	ResNet-101	45.3	56.0	56M	923G	19.3	
UperNet [63]	ResNet-101	44.9	-	86M	1029G	20.1	
OCRNet [67]	HRNet-w48	45.7	2	71M	664G	12.5	
DLab.v3+ [11]	ResNeSt-101	46.9	55.1	66M	1051G	11.9	
DLab.v3+ [11]	ResNeSt-200	48.4	1	88M	1381G	8.1	
SETR [73]	T-Large [‡]	50.3	61.7	308M	-	-	
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2	
UperNet	Swin-T	46.1	-	60M	945G	18.5	
UperNet	Swin-S	49.3		81M	1038G	15.2	
UperNet	Swin-B [‡]	51.6	12	121M	1841G	8.7	
UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2	

Table 3. Results of semantic segmentation on the ADE20K val and test set. [†] indicates additional deconvolution layers are used to produce hierarchical feature maps. [‡] indicates that the model is pre-trained on ImageNet-22K.

Semantic Segmentation

Image Classification

Ablation Study

	ImageNet)CO	ADE20k
	top-1	top-5	APbox	AP ^{mask}	mIoU
w/o shifting	80.2	95.1	47.7	41.5	43.3
shifted windows	81.3	95.6	50.5	43.7	46.1
no pos.	80.1	94.9	49.2	42.6	43.8
abs. pos.	80.5	95.2	49.0	42.4	43.2
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1
rel. pos.	81.3	95.6	50.5	43.7	46.1

Table 4. Ablation study on the *shifted windows* approach and different position embedding methods on three benchmarks, using the Swin-T architecture. w/o shifting: all self-attention modules adopt regular window partitioning, without *shifting*; abs. pos.: absolute position embedding term of ViT; rel. pos.: the default settings with an additional relative position bias term (see Eq. (4)); app.: the first scaled dot-product term in Eq. (4).

Shifted windows configuration

method	MSA	MSA in a stage (ms)					PS)
method	S 1	S2	S 3	S 4	Т	S	В
sliding window (naive)	122.5	38.3	12.1	7.6	183	109	77
sliding window (kernel)	7.6	4.7	2.7	1.8	488	283	187
Performer [14]	4.8	2.8	1.8	1.5	638	370	241
window (w/o shifting)	2.8	1.7	1.2	0.9	770	444	280
shifted window (padding)	3.3	2.3	1.9	2.2	670	371	236
shifted window (cyclic)	3.0	1.9	1.3	1.0	755	437	278

Table 5. Real speed of different self-attention computation methods and implementations on a V100 GPU.

Batch computation based on cyclic shift

Swin Transformer V2: Scaling Up Capacity and Resolution

Ze Liu^{*} Han Hu^{*†} Yutong Lin Zhuliang Yao Zhenda Xie Yixuan Wei Jia Ning Yue Cao Zheng Zhang Li Dong Furu Wei Baining Guo Microsoft Research Asia

{v-zeliu1, hanhu, t-yutonglin, t-zhuyao, t-zhxie, t-yixuanwei, v-jianing}@microsoft.com
{yuecao, zhez, lidong1, fuwei, bainguo}@microsoft.com

Contribution

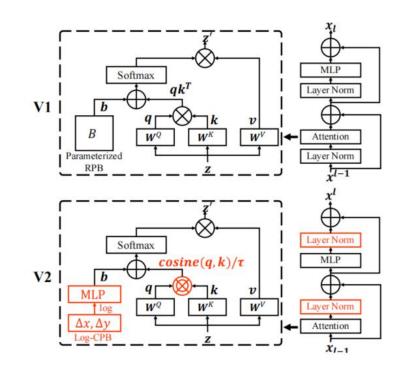
- scaling up to 3 billion parameters
- resolution up to **1,536 x 1,536**
- open source of crucial implementation details of saving GPU memory

Adaptations from V1

- pre-norm -> post-norm
- dot product attention -> scaled cosine attention

capacity

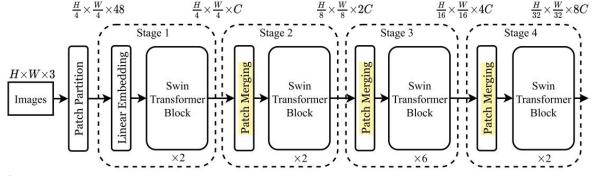
relative position bias -> log spaced continuous relative position bias



resolution

Implementation Tricks

- Zero-Redundancy Optimizer (ZeRO)
 - <u>Regular</u>: broadcast model parameters and optimization states to every GPU or a master node => too redundant for large model
 - <u>ZeRO</u>: the model parameters and the corresponding optimization states will be divided and distributed to multiple GPUs
- Activation check-pointing
 - Saving space of feature maps



- Sequential self-attention computation
 - Compute self-attention sequentially instead of batch-wise in first two stages

Method	train	test	mini-v	al (AP)	test-dev (AP)	
Method	I(W) size	I(W) size	box	mask	box	mask
CopyPaste [17]	1280(-)	1280(-)	57.0	48.9	57.3	49.1
SwinV1-L [35]	800(7)	ms(7)	58.0	50.4	58.7	51.1
YOLOR [53]	1280(-)	1280(-)	-	-	57.3	
CBNet [32]	1400(7)	ms(7)	59.6	51.8	60.1	52.3
DyHead [10]	1200(-)	ms(-)	60.3	-	60.6	-
SoftTeacher [60]	1280(12)	ms(12)	60.7	52.5	61.3	53.0
SwinV2-L		1100(32)	58.8	51.1	10 <u>00</u>	<u></u>
(HTC++)	1536(32)	1100 (48)	58.9	51.2		
(ПТС++)		ms (48)	60.2	52.1	60.8	52.7
SwinV2-G		1100(32)	61.7	53.3		-
	1536(32)	1100 (48)	61.9	53.4	-	-
(HTC++)		ms (48)	62.5	53.7	63.1	54.4

Table 3. Comparison with previous best results on COCO object detection and instance segmentation. I(W) indicates the image and window size. ms indicate multi-scale testing is employed.

Method	train I(W) size	test I(W) size	mIoU
SwinV1-L [35]	640(7)	640(7)	53.5*
Focal-L [61]	640(40)	640(40)	55.4*
CSwin-L [14]	640(40)	640(40)	55.7*
MaskFormer [8]	640(7)	640(7)	55.6*
FaPN [22]	640(7)	640(7)	56.7*
BEiT [3]	640(40)	640(40)	58.4*
SwinV2-L (UperNet)	640(40)	640(40)	55.9*
C : NO C		640(40)	59.1
SwinV2-G	640(40)	896 (56)	59.3
(UperNet)		896 (56)	59.9*

Table 4. Comparison with previous best results on ADE20K semantic segmentation. * indicates multi-scale testing is used.

Method	norom	pre-train	pre-train	pre-train	pre-train	fine-tune	ImageNet-1K-V1	ImaegNet-1K-V2
Wiethou	param	images	length (#im)	im size	time	im size	top-1 acc	top-1 acc
SwinV1-B	88M	IN-22K-14M	1.3B	224^{2}	$< 30^{\dagger}$	384^{2}	86.4	76.58
SwinV1-L	197M	IN-22K-14M	1.3B	224^{2}	$< 10^{\dagger}$	384^{2}	87.3	77.46
ViT-G [65]	1.8B	JFT-3B	164B	224^{2}	>30k	518^{2}	90.45	83.33
V-MoE [44]	14.7B*	JFT-3B	-	224^{2}	16.8k	518^{2}	90.35	-
CoAtNet-7 [11]	2.44B	JFT-3B	-	224^{2}	20.1k	512^{2}	90.88	-
SwinV2-B	88M	IN-22K-14M	1.3B	192^{2}	$< 30^{\dagger}$	384^{2}	87.1	78.08
SwinV2-L	197M	IN-22K-14M	1.3B	192^{2}	${<}20^{\dagger}$	384^{2}	87.7	78.31
SwinV2-G	3.0B	IN-22K-ext-70M	3.5B	192^{2}	$< 0.5 k^{\dagger}$	640^{2}	90.17	84.00

Table 2. Comparison with previous largest vision models on ImageNet-1K V1 and V2 classification. * indicates the sparse model; the "pre-train time" column is measured by the TPUv3 core days with numbers copied from the original papers. † That of SwinV2-G is estimated according to training iterations and FLOPs.

Results

Thank you!