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PIFuHD — Motivation

● Fail to produce reconstructions with the level of detail often 
presented in the input images. 

● Previous approaches tend to take low resolution images as input 
to cover large spatial context, and produce less precise (or low 
resolution) 3D estimates as a result
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PIFuHD — Goal

● Goal: Achieve high-fidelity 3d reconstruction of clothed humans from a 
single image at a resolution sufficient to recover detailed information such 
as fingers, facial features and clothing folds.

● Input: single image
● Output: 3d reconstruction of clothed humans, such as fingers, facial 

features and clothing folds.

Figure 1.1 
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PIFuHD — Method

Figure 1.2 Overview of the framework. Two levels of pixel-aligned predictors produce 
high-resolution 3D reconstructions. The coarse level (top) captures global 3D structure, while 
high-resolution detail is added by the fine level.
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PIFuHD — Method

● Extracted function to estimates the occupancy of the query 3D point X

● Pixel-Aligned implicit function
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PIFuHD — Method

Multi-level Pixel-Aligned implicit function

● Low-resolution occupancy

● High-resolution occupancy
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PIFuHD — Method

𝙎 denotes the set of samples at which the loss is evaluated,  
𝛌 is the ratio of points outside surface in 𝙎, 
f*(.)denotes the ground truth occupancy at that location, 
f{L,H}g(.) are each of the pixel-aligned implicit functions of Low-resolution and High-resolution.

Binary Cross Entropy (BCE) loss function
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PIFuHD — Experiments

Figure 1.3  Qualitative evaluation of multi-level pixel-aligned implicit function on samples from 
RenderPeople and BUFF datasets. We compare the results of the final method with the results 
of other alternative designs.
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PIFuHD — Experiments

Table 1.1 Quantitative evaluation on RenderPeople and BUFF datasets for single-view reconstruction. 
Units for point-tosurface and Chamfer distance are in cm.
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PIFuHD — Experiments

Figure 1.4 Qualitatively compare the method with state-of-the-art methods, including (c) Tex2shape, (d) 
PIFu, and (e) DeepHuman, on the People Snapshot dataset. By fully leveraging high-resolution image 
inputs, (b) our method can reconstruct higher resolution geometry compared to the existing methods.
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PIFuHD — Experiments

Figure 1.4 Qualitative results on Internet photos.
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PIFuHD — Conclusion

● Present a multi-level framework t to arrive at high-resolution 3D 
reconstructions of clothed humans from a single image 

● propagating global context through a scale pyramid as an 
implicit 3D embedding
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Neural Body: Implicit Neural Representations with 
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Neural Body — Motivation

● A new approach capable of synthesizing photorealistic novel views of a 
performer in complex motions from a sparse multi-view video

● A novel implicit neural representation for a dynamic human, which enables 
us to effectively incorporate observations over video frames.

● The learned neural representations at different frames share the same set of 
latent codes anchored to a deformable mesh.
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Neural Body — Goal

● Goal: View synthesis and body reconstruction for a human performer from a very 
sparse set of camera views.

● Input: Sparse multi-view videos 
● Output: 3D geometry and apperance Novel view synthesis and 3D reconstruction

Figure 1
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Neural Body — Method

Figure 2.2 The basic idea of Neural Body
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Neural Body — Method

Figure 2.3 Implicit neural representation with structured latent codes
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Neural Body — Method

● Density model

● Color model
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Neural Body — Method

Volume Rendering
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Neural Body — Method

Optimize

Minimize the rendering error of observed images 

L is the Loss function:
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Neural Body — Experiments

Dataset

● ZJU-MoCap 

a multi-view dataset

● People-Snapshot dataset

Monocular video dataset
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Neural Body — Experiments

Novel view synthesis

Table 2.1 Results on the ZJU-MoCap dataset in terms of PSNR and SSIM (higher 
is better). “NV” means Neural Volumes, and “NT” means Neural Textures.
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Neural Body — Experiments
Novel view synthesis

Figure 2.4 Novel view synthesis on the ZJU-MoCap dataset.
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Neural Body — Experiments
Novel view synthesis

Figure 2.5 Novel view synthesis on monocular videos (People-Snapshot Dataset)
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Neural Body — Experiments
3D Reconstruction

Figure 2.6 3D reconstruction on the ZJU-MoCap dataset
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Neural Body — Experiments
3D Reconstruction

Figure 2.7 3D reconstruction on monocular videos(People-Snapshot).
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Neural Body — Conclusion

● Introduce a novel implicit neural representation, named Neural Body, for novel 
view synthesis of dynamic humans from sparse multi-view videos.

● Establish a latent variable model that generates implicit fields at different 
video frames from the same set of latent codes

● Create a multi-view dataset called ZJU-MoCap that captures dynamic 
humans in complex motions and perform well.
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