RigNet: Neural Rigging for
Articulated Characters

Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, Karan Singh
University of Massachusetts Amherst ; University of Toronto
Siggraph 2020



Overall

Our Goal: Drive the mesh

Input: 3D mesh of a character
Output: Skeleton and Skinning Weights




Preliminary

Key: How to drive mesh/animate the surface

Skinning Weight: Envelop the underlying skeleton with a surface
representation that conveys the appearance of the character and
deforms with the underlying skeleton




Preliminary (cont.)

Linear Blend Skinning (LBS)

e Assign each skin vertex to more than one bone

* Each bone i to which vertex v; belongs to is
assigned a nonzero weight w;;

 The world space position of the vertex is
computed as the weighted average of the world
space positions obtained from each bone via
rigid skinning:
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Basic Modules

GMEdgeConv layer

Xuﬁm - max ﬂ-’fLP(XU} XH - KU; Wm)
' ue Ny, (v)
Xpo = max MLP(X,, X, — Xy Wg)
u.g ueN, (o) v Ay vs Wg

X, = MLP(concat(Xy,m. Xog); W)

GMEdgeNet stacks three GMEdgeConv
layers, each followed with a global max-
pooling layer

one-ring mesh neighbors
vertices located within a geodesic ball centered at it
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Basic Modules

GMEdgeNet
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GMEdgeNet stacks three i o) . ggggéépnage
GMEdgeConv layers, each = (%Gmwiumb@“}w@_.m
followed with a global max- e v
pooling layer input mesh (%GMEdgeCﬂnv]*m]—;:.m} max S e
learned vertex representations —* W E
Incorporate both local and global per-vertex
information GMEdgeNet attributes

vertex displacement module, the feature representation are transformed to 3D displacements
per each vertex through another MLP.

vertex attention module, the per-vertex feature representations are transformed through a MLP
and a sigmoid nonlinearity to produce a scalar attention value per vertex



Joint Prediction

learns to displace mesh geometry towards candidate joint locations

Key Problem: the number of joints [not pre-defined]
combination of regression and adaptive clustering
Regression

mesh vertices are regressed to their nearest candidate joint locations

q=v+ fg(M;w;) the goalis to map mesh vertices to joint locations

d = fﬂ (M Wu) attention map includes a scalar value per vertex



Joint Prediction (cont.)

learns to displace mesh geometry towards candidate joint locations

Clustering

denser <,

Input: displaced points q and attention values a
Output: joints

Sparser Sparscr

variant of mean-shift clustering
Kernel:

denser “S g denser

> ay - K(qu —qo, h) - qu

mg =

> au-K(Qu-—qo k) P

sparser Sparser

K(qu—qo,h) = max(1-||qu—qo||*/h*, 0) Use bandwidth parameter h
. - that controls the level-of-detall
From the largest density to create joints one by one

Symmetry as a constraint zero bandwidth = each displaced vertex to become a joint



Connectivity prediction

Bone module ST . global joint

LI encoding
Learned neural module that outputs the . {Fﬂlﬂtﬂﬂ}m

probability of connecting each pair of -, - joints

i . i lobal shape
joints via a bone k - genc-::ndmg

GMEdgeNet
Inputs 1 v
(a) a 128-dimensional representation encoding the C .-:.mesh
overall skeleton geometry (PointNet) ';i e E
(b)a 128-dimensional representation encoding iﬂ"m
global shape geometry 1 ‘- descriptor bane
(c) a representation encoding the input pair of joints prob.
[t t, di,j, Ui,j] BoneNet

pij = sigmoid(MLP(f; j, gs. 8¢ Wy))



Connectivity prediction (cont.)

Skeleton extraction

w;: : = — 1o . . negative log probabilities
LJ gp:ur Weights

dense graph: nodes are the extracted joints,
and edges have weights w;;

use a MST algorithm to solve

Root Net

Distance to bilateral symmetry plane

Pir = Sﬂffmﬂx(MLP(fi: Bs; gf;wr))



Skinning prediction

Skeleton-aware mesh representation
H = {hﬂ}

each vertex v, sort the bones according to their
volumetric geodesic distance {b;u}r=1.k

5 closest bones others 0

Skinning Module

outputs a 1280-dimensional per-vertex feature vector,
which is transformed to a per-vertex skinning weight

vector S, through a learned MLP and a softmax function.
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Training

Joint prediction stage training

V K

1 . . 1 «— . Chamfer distance between collapsed
Leg(Wg, Wy, h) = — Z min ||ty — t || + — Z min ||ty — t || ) d training iof P
Ve~ ok K il vertices {t, }and training joints {t; }

1 . A 1 «— ) . .
L (wg) = = Z min 9o — tl+ = Z min||g, — f || ~ Supervised vertex displacements
> )
Lm(wg) =mloga+ (1 —m)log(1—a) cross-entropy between these masks and neural attention

binary mask for attention map
Connectivity stage training

ey N oAl o cross-entropy between the training adjacency

Lm(Wa) = Z‘D” log pij + (1= pij) log(1 = pi;) matrix entries and the predicted probabilities
L]

Skinning stage training

1 R
Li(wg) = v Z Z So.r log sy, cross-entropy training and predicted distributions for each vertex
(il r



Results

[Baran and
Popovi¢ 2007]

[Baran and
Popovi¢ 2007]

Animator-created Ours [Xuetal. 2019] Animator-created [Xu et al. 2019]

skeleton extraction results comparison



Results

Ours

uSkmnmg weights  Errormap  Different pose Skinning weights  Errormap  Different pose Skinning weights  Error map leferent pose
[Liu et al. 2019] [Dionne and de Lasa 2013]

Skinning results comparison



Results

IoU | Prec. | Rec. |CD-J2J|CD-J2B|CD-B2B
Pinocchio [36.5%|38.7%|35.9%| 7.2% | 5.5% | 4.7%
Xu et al. 201953.7%(53.9%|55.2%| 4.5% | 2.9% | 2.6%
Ours 61.6%|67.6%|58.9%| 3.9% | 2.4% | 2.2%
Table 1. Comparisons with other skeleton prediction methods.

Prec. | Rec. |avg L1|avg distmax dist

BBW 68.3%|77.6 %| 0.69 |0.0061 | 0.055
GeoVoxel |72.8%|75.1 %| 0.65 |0.0057| 0.049
NeuroSkinning 76.3%|74.7 %| 0.57 |0.0053 | 0.043

Ours 82.3%|80.8% | 0.39 |0.0041| 0.032
Table 2. Comparisons with other skinning prediction methods.




Ablation

IoU | Prec. | Rec. |CD-J2J|CD-J2B|CD-B2B
P2PNet-based [40.6%|41.6%|42.0%| 6.3% | 4.6% | 3.8%
No attn 52.49%|50.9%|50.7%| 4.6% | 3.1% | 2.7%
One-ring  [59.7%|65.6%|57.4%| 4.1% | 2.5% | 2.4%
No vertex 10ss |59.3%|58.2%|57.6%| 4.2% | 2.7% | 2.5%
No attn pretrain/60.6%|64.0%|58.1%| 4.2% | 2.6% | 2.4%
Full 61.6%(67.6%58.9%| 3.9% | 2.4% | 2.2%

Table 3. Joint prediction ablation study

Class. Acc. | CD-B2B | ED

Euclidean edge cost 61.2% 0.30% | 5.0

bone descriptor only 71.9% 0.22% | 4.2

bone descriptor+skel. geometry 80.7% 0.12% | 2.1
Full stage 83.7 % 0.10%

Table 4. Connectivity prediction ablation study

Prec | Rec. |avg-L1|avg-dist.|max-dist.
No geod. dist|80.0%(79.3%| 0.41 | 0.0044 | 0.054
Ours 82.3%80.8%| 0.39 | 0.0041 | 0.032

Table 5. Skinning prediction ablation study



Weakness:

1. input training and test shapes have a consistent upright ,
front facing orientation, and T-pose

2. mesh resolution should near the training dataset

3. connectivity is not guaranteed
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