RigNet: Neural Rigging for Articulated Characters

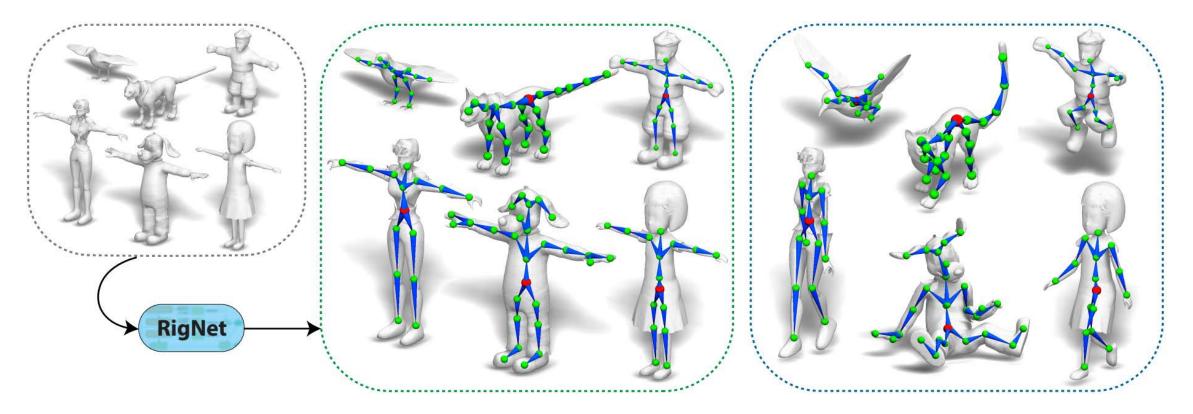
Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, Karan Singh University of Massachusetts Amherst ; University of Toronto Siggraph 2020

Overall

Input: 3D mesh of a character

Our Goal: Drive the mesh

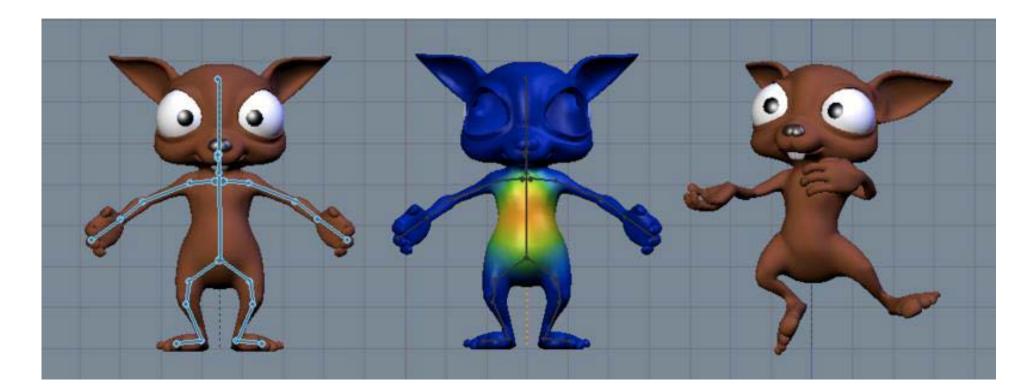
Output: Skeleton and Skinning Weights



Preliminary

Key: How to drive mesh/animate the surface

Skinning Weight: Envelop the underlying skeleton with a surface representation that conveys the appearance of the character and deforms with the underlying skeleton

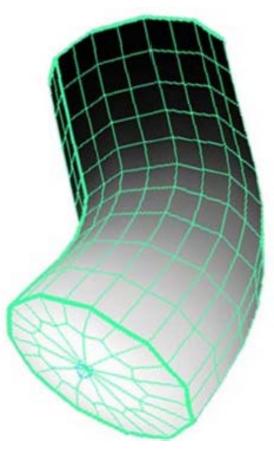


Preliminary (cont.)

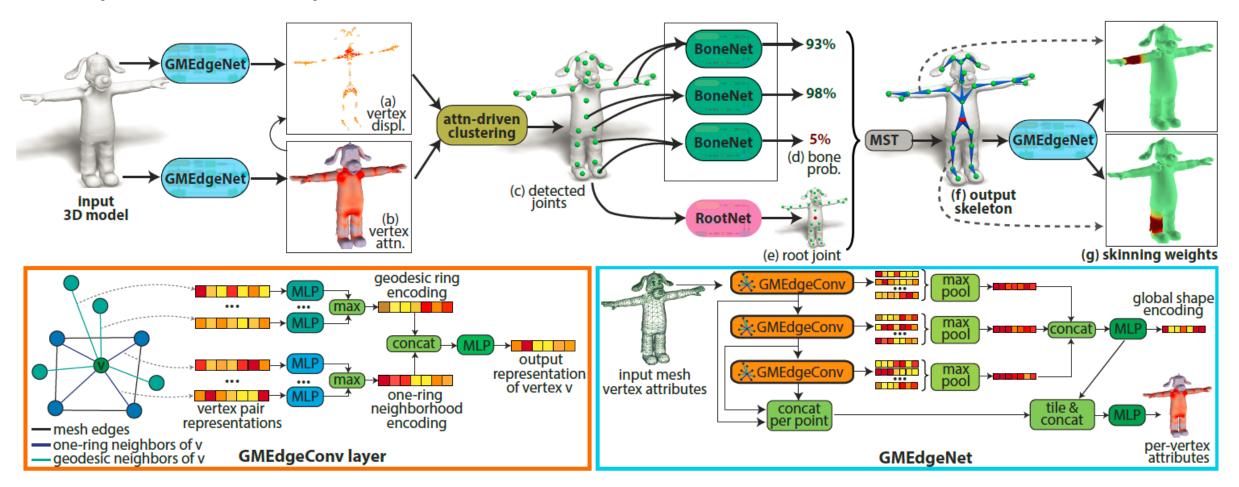
Linear Blend Skinning (LBS)

- Assign each skin vertex to more than one bone
- Each bone *i* to which vertex v_j belongs to is assigned a nonzero weight w_{ij}
- The world space position of the vertex is computed as the weighted average of the world space positions obtained from each bone via rigid skinning:

$$v_j' = \sum_i w_{ij} T_i v_j^i$$



System Pipeline



Skeletal joint prediction

Skeleton connectivity prediction

Skinning prediction

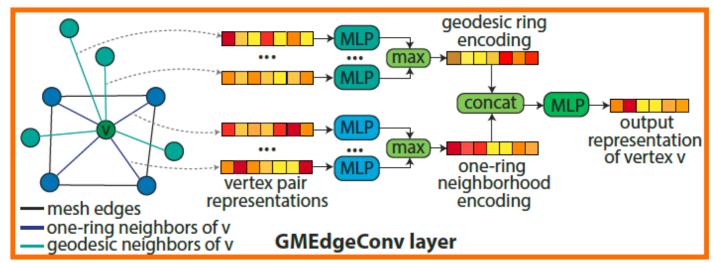
Basic Modules

GMEdgeConv layer

$$\mathbf{x}_{v,m} = \max_{u \in \mathcal{N}_m(v)} MLP(\mathbf{x}_v, \mathbf{x}_u - \mathbf{x}_v; \mathbf{w}_m)$$
$$\mathbf{x}_{v,g} = \max_{u \in \mathcal{N}_g(v)} MLP(\mathbf{x}_v, \mathbf{x}_u - \mathbf{x}_v; \mathbf{w}_g)$$
$$\mathbf{x}'_v = MLP(concat(\mathbf{x}_{v,m}, \mathbf{x}_{v,g}); \mathbf{w}_c)$$

GMEdgeNet stacks three GMEdgeConv layers, each followed with a global maxpooling layer one-ring mesh neighbors

vertices located within a geodesic ball centered at it

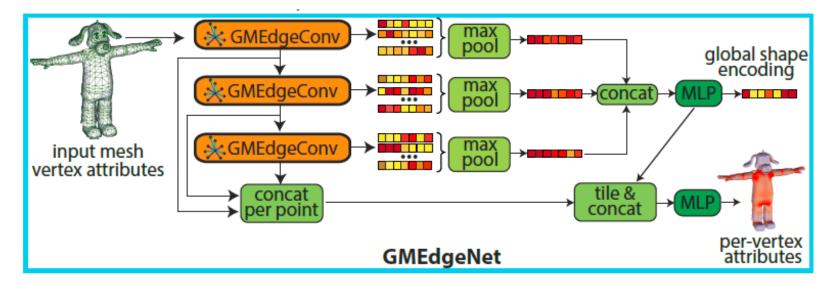


Basic Modules

GMEdgeNet

GMEdgeNet stacks three GMEdgeConv layers, each followed with a global maxpooling layer

learned vertex representations incorporate both local and global information



vertex displacement module, the feature representation are transformed to 3D displacements per each vertex through another MLP. **vertex attention module**, the per-vertex feature representations are transformed through a MLP and a sigmoid nonlinearity to produce a scalar attention value per vertex

Joint Prediction

learns to **displace** mesh geometry towards candidate joint locations

Key Problem: the number of joints [not pre-defined] combination of regression and adaptive clustering Regression

mesh vertices are regressed to their nearest candidate joint locations

 $\mathbf{q} = \mathbf{v} + f_d(\mathcal{M}; \mathbf{w}_d)$ the goal is to map mesh vertices to joint locations

 $\mathbf{a} = f_a(\mathcal{M}; \mathbf{w}_a)$ attention map includes a scalar value per vertex

Joint Prediction (cont.)

learns to **displace** mesh geometry towards candidate joint locations

Clustering

Input: displaced points q and attention values a **Output**: joints

variant of mean-shift clustering

Kernel:

$$\mathbf{m}_{v} = \frac{\sum_{u} a_{u} \cdot K(\mathbf{q}_{u} - \mathbf{q}_{v}, h) \cdot \mathbf{q}_{u}}{\sum_{u} a_{u} \cdot K(\mathbf{q}_{u} - \mathbf{q}_{v}, h)} - \mathbf{q}_{v}$$

$$K(\mathbf{q}_u - \mathbf{q}_v, h) = max(1 - ||\mathbf{q}_u - \mathbf{q}_v||^2 / h^2, 0)$$

From the largest density to create joints one by one

sparser sparser denser denser 😒 sparser

denser 4

denser

Use bandwidth parameter h that controls the level-of-detail

zero bandwidth = each displaced vertex to become a joint

sparser

Symmetry as a constraint

Connectivity prediction

Bone module

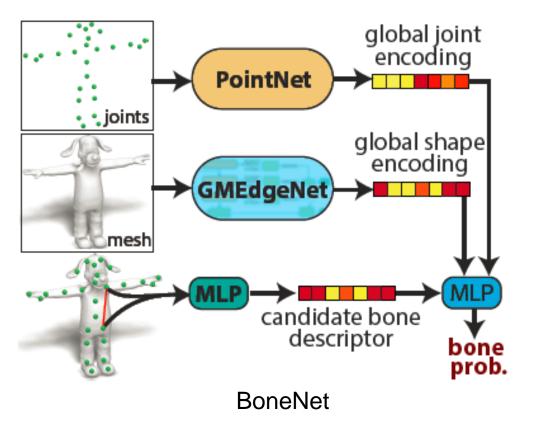
Learned neural module that outputs the **probability** of connecting each pair of joints via a bone

Inputs

(a) a 128-dimensional representation encoding the overall skeleton geometry (PointNet)
(b) a 128-dimensional representation encoding global shape geometry

(c) a representation encoding the input pair of joints $[t_i, t_j, d_{i,j}, o_{i,j}]$

 $p_{i,j} = sigmoid(MLP(\mathbf{f}_{i,j}, \mathbf{g}_s, \mathbf{g}_t; \mathbf{w}_b))$



Connectivity prediction (cont.)

Skeleton extraction

 $w_{i,j} = -\log p_{i,j}$

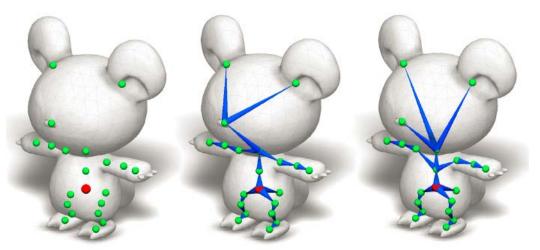
negative log probabilities Weights

dense graph: nodes are the extracted joints, and edges have weights w_{ij} use a MST algorithm to solve

Root Net

Distance to bilateral symmetry plane

$$p_{i,r} = softmax(MLP(\mathbf{f}_i, \mathbf{g}_s, \mathbf{g}_t; \mathbf{w}_r))$$



Skinning prediction

Skeleton-aware mesh representation

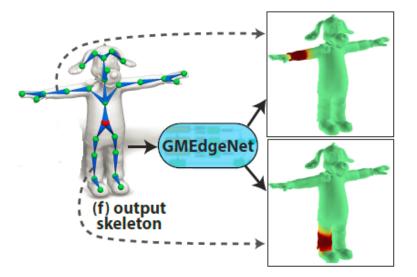
 $\mathbf{H} = \{\mathbf{h}_v\}$

each vertex v, sort the bones according to their **volumetric geodesic distance** $\{b_{r,v}\}_{r=1...K}$

5 closest bones others 0

Skinning Module

outputs a 1280-dimensional per-vertex feature vector, which is transformed to a per-vertex skinning weight vector S_v through a learned MLP and a softmax function.



Training

Joint prediction stage training

$$L_{cd}(\mathbf{w}_{a}, \mathbf{w}_{d}, h) = \frac{1}{V} \sum_{v=1}^{V} \min_{k} ||\mathbf{t}_{v} - \hat{\mathbf{t}}_{k}|| + \frac{1}{K} \sum_{k=1}^{K} \min_{v} ||\mathbf{t}_{v} - \hat{\mathbf{t}}_{k}|| \quad \begin{array}{c} \text{Chamfer distance between collapsed} \\ \text{vertices } \{\mathbf{t}_{v}\} \text{ and training joints } \{\hat{\mathbf{t}}_{k}\} \\ L'_{cd}(\mathbf{w}_{d}) = \frac{1}{V} \sum_{v} \min_{k} ||\mathbf{q}_{v} - \hat{\mathbf{t}}_{k}|| + \frac{1}{K} \sum_{k} \min_{v} ||\mathbf{q}_{v} - \hat{\mathbf{t}}_{k}|| \quad \text{Supervised vertex displacements} \\ L_{m}(\mathbf{w}_{a}) = \hat{\mathbf{m}} \log \mathbf{a} + (1 - \hat{\mathbf{m}}) \log(1 - \mathbf{a}) \quad \begin{array}{c} \text{cross-entropy between these masks and neural attention} \\ \text{binary mask for attention map} \end{array}$$

Connectivity stage training

$$L_m(\mathbf{w}_a) = \sum_{i,j} \hat{p}_{ij} \log p_{i,j} + (1 - \hat{p}_{ij}) \log(1 - p_{i,j})$$

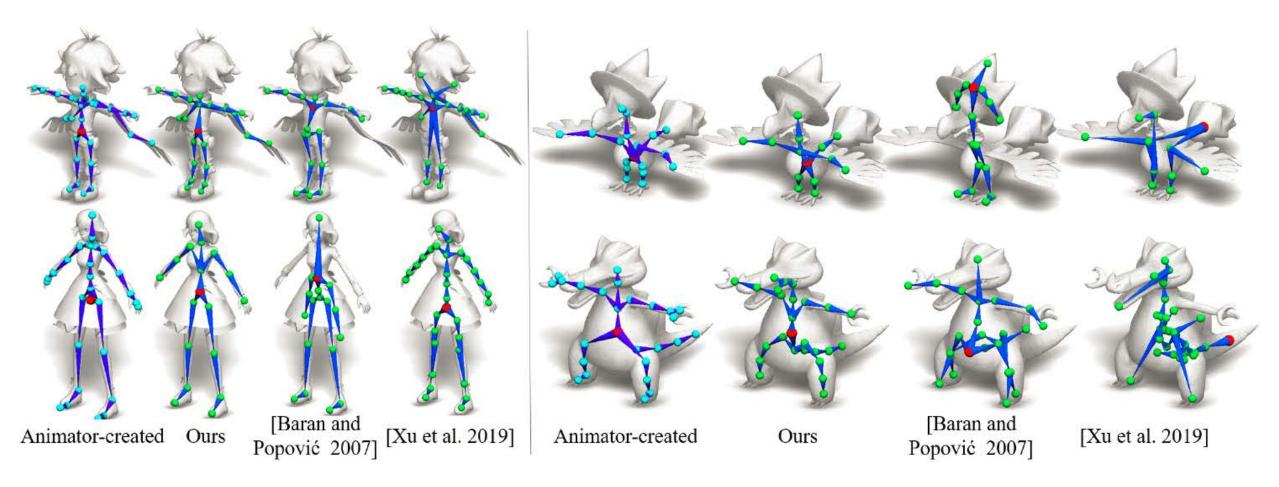
cross-entropy between the training adjacency matrix entries and the predicted probabilities

Skinning stage training

$$L_s(\mathbf{w}_s) = \frac{1}{V} \sum_{v} \sum_{r} \hat{s}_{v,r} \log s_{v,r}$$
 cross

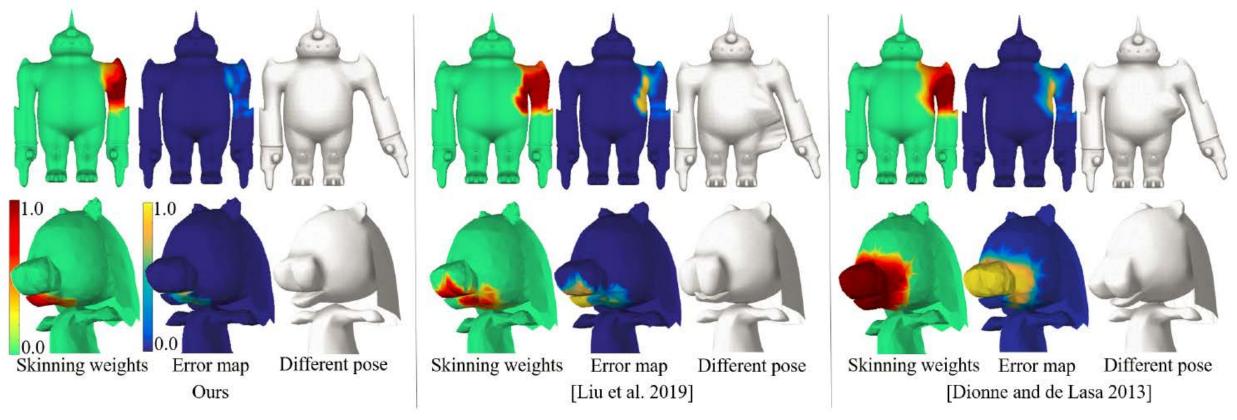
cross-entropy training and predicted distributions for each vertex

Results



skeleton extraction results comparison

Results



Skinning results comparison

Results

	IoU	Prec.	Rec.	CD-J2J	CD-J2B	CD-B2B
Pinocchio	36.5%	38.7%	35.9%	7.2%	5.5%	4.7%
Xu et al. 2019	53.7%	53.9%	55.2%	4.5%	2.9%	2.6%
Ours	61.6%	67.6%	58.9%	3.9%	2.4%	2.2%

Table 1. Comparisons with other skeleton prediction methods.

	Prec.	Rec.	avg L1	avg dist	max dist
BBW	68.3%	77.6 %	0.69	0.0061	0.055
GeoVoxel	72.8%	75.1 %	0.65	0.0057	0.049
NeuroSkinning	76.3%	74.7 %	0.57	0.0053	0.043
Ours	82.3%	80.8%	0.39	0.0041	0.032

Table 2. Comparisons with other skinning prediction methods.

Ablation

	IoU	Prec.	Rec.	CD-J2J	CD-J2B	CD-B2B
P2PNet-based	40.6%	41.6%	42.0%	6.3%	4.6%	3.8%
No attn	52.4%	50.9%	50.7%	4.6%	3.1%	2.7%
One-ring	59.7%	65.6%	57.4%	4.1%	2.5%	2.4%
No vertex loss	59.3%	58.2%	57.6%	4.2%	2.7%	2.5%
No attn pretrain	60.6%	64.0%	58.1%	4.2%	2.6%	2.4%
Full	61.6%	67.6%	58.9%	3.9%	2.4%	2.2%

Table 3. Joint prediction ablation study

	Class. Acc.	CD-B2B	ED
Euclidean edge cost	61.2%	0.30%	5.0
bone descriptor only	71.9%	0.22%	4.2
bone descriptor+skel. geometry	80.7%	0.12%	2.9
Full stage	83.7%	0.10%	2.4

Table 4. Connectivity prediction ablation study

	Prec	Rec.	avg-L1	avg-dist.	max-dist.
No geod. dist.	80.0%	79.3%	0.41	0.0044	0.054
Ours	82.3%	80.8%	0.39	0.0041	0.032

Table 5. Skinning prediction ablation study

Weakness:

1. input training and test shapes have a **consistent upright**, **front facing orientation**, **and T-pose**

2. mesh resolution should near the training dataset

3. connectivity is not guaranteed