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Introduction:
● Automatic localization of a target, given a bounding box in the initial frame

● Tracking problem: closely related to the detection problem (instance detection)

● Major difference: 
○ Object detection locates objects of some predefined classes and its output does not differentiate 

between intra-class instances
○ Object tracking only looks for a particular instance, which may belong to any known or unknown 

object class, that is specified in the initial frame

● Object detection techniques are used extensively in object tracking: 
○ SiamRPN variants, ATOM, DiMP
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Motivations & Contributions:

❏ Aim:  Directly convert a modern object detector into a high-performance tracker

❏ Main Challenge: Obtain a good initialization of the detector without overfitting

❏ Solution: Meta-learning 

❏ Meta-learning Categorization:

❏ Meta-Representation (“What?”) :  Choice of representation of meta-knowledge  (e.g., model 
parameters)

❏ Meta-Optimizer (“How?”) :  Choice of optimizer to use for the outer level during meta-training  
(e.g., gradient descent forms)

❏ Meta-Objective (“Why?”) :  Choice of meta-objective, task distribution, and data-flow

❏ Model-Agnostic Meta-Learning (MAML): A learning strategy to initialize SOTA 
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Detector-MAML: Three-Step Approach

1- Pick any modern object detector 
trained with gradient descent

2- Conduct offline training (or 
initialization) with MAML on a large 
number of tracking sequences

3- Perform domain adaptation using 
the initial frame
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● During Tracking: Training with more samples



 Learning an Instance Detector with MAML
❏ Inner-Level Optimization: Given a video Vi, collect a set of training samples

❏ Update detector on support set by a k-step GD
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Set of training samples: Support set 

Detector model

Input image

Parameters of a detectork-step gradient descent 
(GD) algorithm

Loss function

Label in support set

Data-label pair
 Learning rate: a 

predefined constant 



Learning an Instance Detector with MAML (cont.)
❏ Outer-Level Optimization: Collect another set of samples from the same video Vi

❏ Evaluate Generalization Ability of Trained Detector

❏ Goal: Find a good initialization status for any tracking video

❏ Calculate the loss on the target set by applying the trained detector
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Target Set:
One image

Support Set:
Three images

 Total number of videos



MAML Computational Graph
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MAML Modifications

❏ MAML Drawbacks :

❏ Backpropagation through GD steps is costly in terms of memory 

❏ Suffer from vanishing gradients

❏ Catastrophic forgetting problem

❏ Same weight on different pieces of knowledge within an episode

❏ Hard to scale to tasks involving medium or large datasets

❏ MAML++: Introduces a set of tricks to stabilize the training of MAML 

❏ MetaSGD: Train learnable learning rates for every parameter
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MAML++: Multi-Step Loss Optimization
❏ Take the parameters after every step of inner-level GD to minimize the loss on 

target set, instead of only using the parameters after the final step

❏ Trick: initialization parameter θ0 (before updating) also contributes to the 
outer-level loss

9Loss weight for each step

Number of inner-level steps

Crucial for stabilizing 
the gradients



MAML++ Computational Graph
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Meta-SGD: Kernel-Wise Learnable Learning Rate (KLLR)

❏ A learnable learning rate for each parameter in the model

❏ α is a tensor with the same size as θk
❏ Setting up a learning rate for every parameter will double the model size

❏ Arrange the learnable learning rates in a kernel-wise manner

11Element-wise product

The only difference compared to 
MAML is to parametrize task 

learning rate in vector form when 
meta-training.



Training Pipeline: Stabilized the Procedure by MAML++ & Meta-SGD
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A few steps of SGD optimization is performed on the support images

Updated parameters after each step for calculating the meta-gradient based on testing images

4-step GD for 
inner-level 

optimization

Adam solver for 
outer-level 

optimization



1- Retina-MAML and FCOS-MAML
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❏ Single-stage detectors: Backbone network, 
Classification head, Regression head

❏ Anchor-based RetinaNet: 
❏ Each pixel in the feature maps is associated with several anchors 
❏ Classification head: Classify whether each anchor has sufficient 

overlap with an object
❏ Regression head: Predict the relative differences between each 

anchor and the corresponding ground-truth box

❏ Anchor-free FCOS:
❏ Classification head: Classify whether each pixel in the feature 

maps is within the central area of an object 
❏ Regression head: Directly estimates the four offsets from the 

pixel to the object boundaries

Anchors: Predefined Prior Boxes



Network Architecture

❏ Backbone: ResNet-18

● First three blocks are frozen after 
ImageNet pre-training

● Block-4 is independently trained 
during offline training

● Block-5 is removed

● Online training only involves a 
subset of trainable layers

14● RetinaNet: Pre-define a single anchor box with a size of 64 × 64 pixels



2- Offline MAML training: Loss

❏ Retina-MAML: 

● Anchor box: Positive (or negative) label when its IoU with the GT box is greater 
than 0.5 (or less than 0.3)

● Classification branch: Focal loss 

● Regression branch: Smooth L1 loss

❏ FCOS-MAML: 

● Centerness scores: L2 loss

● Regression branch: L1 loss
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2- Offline MAML training: Training Data

❏ Datasets: MS-COCO, GOT10k, TrackingNet, and LaSOT-train

❏ LaSOT and TrackingNet: Only sample one frame for every three or ten frames

❏ Training images are cropped and resized into a resolution of 263 × 263

❏ Standard data augmentation: Random scaling and shifting
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2- Offline MAML training: Optimization
❏ Inner-level optimization:

● 4-step GD 

● Initialize KLLR α: 0.001

● Initialize multi-step loss weights γk: Equal contribution and gradually anneal 
(parameters from later steps will attract more attention) 

❏ Outer-level optimization: 

● Adam optimizer with a starting learning rate 0.0001

● Each iteration: Sample 32 pairs of images

● Train for 20 epochs with 10,000 iterations per epoch
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3- Domain Adaptation (Given an initial BB of target):
❏ Generate a patch with resolution 263 × 263 

❏ Adopt zoom in/out data augmentation to construct the support set

❏ Update tracker by a 5-step GD

❏ For each search region patch:

● Detector locates hundreds of candidate bounding boxes

● Standard post-processing pipeline: Shape penalty and cosine window functions 

● Tracking result: Candidate box with the highest score 
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3- Domain Adaptation (Given an initial BB of target):

❏ During tracking (40 FPS on a single NVIDIA P100 GPU):

● Gradually enlarge support set

❏ Online updating (on updated support set & 1-step GD to maintain a high speed):

● After every n = 10 frames or when a distracting peak is detected (peak-to-sidelobe 
is greater than 0.7)

● Tracking result above a predefined threshold, it will be added into the support set

● Buffer at most 30 training images in the support set

● Earlier samples, except the initial one, will be discarded
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FCOS-MAML: Training Procedure
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Training image Testing image

Baseline detector: Standard GD 



FCOS-MAML: Training Procedure
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❏ MAML detector convergences quickly and has strong generalization ability

Baseline detector: Standard GD 



Experiments on OTB-100 Dataset: 
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Experiments on VOT-2018 Dataset: 
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Experiments on TrackingNet & LaSOT Datasets:
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AUC of Success Plot
Normalized Precision (N-Prec.)



Thanks for your attention.

Questions / Answers
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