
Tracking by Instance Detection: A
Meta-Learning Approach

G. Wang, C. Luo, X. Sun, Z. Xiong, W. Zeng

University of Science and Technology of China,
Microsoft Research Asia

Introduction:
● Automatic localization of a target, given a bounding box in the initial frame

● Tracking problem: closely related to the detection problem (instance detection)

● Major difference:
○ Object detection locates objects of some predefined classes and its output does not differentiate

between intra-class instances
○ Object tracking only looks for a particular instance, which may belong to any known or unknown

object class, that is specified in the initial frame

● Object detection techniques are used extensively in object tracking:
○ SiamRPN variants, ATOM, DiMP

2

Motivations & Contributions:

❏ Aim: Directly convert a modern object detector into a high-performance tracker

❏ Main Challenge: Obtain a good initialization of the detector without overfitting

❏ Solution: Meta-learning

❏ Meta-learning Categorization:

❏ Meta-Representation (“What?”) : Choice of representation of meta-knowledge (e.g., model
parameters)

❏ Meta-Optimizer (“How?”) : Choice of optimizer to use for the outer level during meta-training
(e.g., gradient descent forms)

❏ Meta-Objective (“Why?”) : Choice of meta-objective, task distribution, and data-flow

❏ Model-Agnostic Meta-Learning (MAML): A learning strategy to initialize SOTA
detectors 3

Detector-MAML: Three-Step Approach

1- Pick any modern object detector
trained with gradient descent

2- Conduct offline training (or
initialization) with MAML on a large
number of tracking sequences

3- Perform domain adaptation using
the initial frame

4
● During Tracking: Training with more samples

 Learning an Instance Detector with MAML
❏ Inner-Level Optimization: Given a video Vi, collect a set of training samples

❏ Update detector on support set by a k-step GD

5

Set of training samples: Support set

Detector model

Input image

Parameters of a detectork-step gradient descent
(GD) algorithm

Loss function

Label in support set

Data-label pair
 Learning rate: a

predefined constant

Learning an Instance Detector with MAML (cont.)
❏ Outer-Level Optimization: Collect another set of samples from the same video Vi

❏ Evaluate Generalization Ability of Trained Detector

❏ Goal: Find a good initialization status for any tracking video

❏ Calculate the loss on the target set by applying the trained detector

6

Target Set:
One image

Support Set:
Three images

 Total number of videos

MAML Computational Graph

7

MAML Modifications

❏ MAML Drawbacks :

❏ Backpropagation through GD steps is costly in terms of memory

❏ Suffer from vanishing gradients

❏ Catastrophic forgetting problem

❏ Same weight on different pieces of knowledge within an episode

❏ Hard to scale to tasks involving medium or large datasets

❏ MAML++: Introduces a set of tricks to stabilize the training of MAML

❏ MetaSGD: Train learnable learning rates for every parameter

8

MAML++: Multi-Step Loss Optimization
❏ Take the parameters after every step of inner-level GD to minimize the loss on

target set, instead of only using the parameters after the final step

❏ Trick: initialization parameter θ0 (before updating) also contributes to the
outer-level loss

9Loss weight for each step

Number of inner-level steps

Crucial for stabilizing
the gradients

MAML++ Computational Graph

10

Meta-SGD: Kernel-Wise Learnable Learning Rate (KLLR)

❏ A learnable learning rate for each parameter in the model

❏ α is a tensor with the same size as θk
❏ Setting up a learning rate for every parameter will double the model size

❏ Arrange the learnable learning rates in a kernel-wise manner

11Element-wise product

The only difference compared to
MAML is to parametrize task

learning rate in vector form when
meta-training.

Training Pipeline: Stabilized the Procedure by MAML++ & Meta-SGD

12

A few steps of SGD optimization is performed on the support images

Updated parameters after each step for calculating the meta-gradient based on testing images

4-step GD for
inner-level

optimization

Adam solver for
outer-level

optimization

1- Retina-MAML and FCOS-MAML

13

❏ Single-stage detectors: Backbone network,
Classification head, Regression head

❏ Anchor-based RetinaNet:
❏ Each pixel in the feature maps is associated with several anchors
❏ Classification head: Classify whether each anchor has sufficient

overlap with an object
❏ Regression head: Predict the relative differences between each

anchor and the corresponding ground-truth box

❏ Anchor-free FCOS:
❏ Classification head: Classify whether each pixel in the feature

maps is within the central area of an object
❏ Regression head: Directly estimates the four offsets from the

pixel to the object boundaries

Anchors: Predefined Prior Boxes

Network Architecture

❏ Backbone: ResNet-18

● First three blocks are frozen after
ImageNet pre-training

● Block-4 is independently trained
during offline training

● Block-5 is removed

● Online training only involves a
subset of trainable layers

14● RetinaNet: Pre-define a single anchor box with a size of 64 × 64 pixels

2- Offline MAML training: Loss

❏ Retina-MAML:

● Anchor box: Positive (or negative) label when its IoU with the GT box is greater
than 0.5 (or less than 0.3)

● Classification branch: Focal loss

● Regression branch: Smooth L1 loss

❏ FCOS-MAML:

● Centerness scores: L2 loss

● Regression branch: L1 loss

15

2- Offline MAML training: Training Data

❏ Datasets: MS-COCO, GOT10k, TrackingNet, and LaSOT-train

❏ LaSOT and TrackingNet: Only sample one frame for every three or ten frames

❏ Training images are cropped and resized into a resolution of 263 × 263

❏ Standard data augmentation: Random scaling and shifting

16

2- Offline MAML training: Optimization
❏ Inner-level optimization:

● 4-step GD

● Initialize KLLR α: 0.001

● Initialize multi-step loss weights γk: Equal contribution and gradually anneal
(parameters from later steps will attract more attention)

❏ Outer-level optimization:

● Adam optimizer with a starting learning rate 0.0001

● Each iteration: Sample 32 pairs of images

● Train for 20 epochs with 10,000 iterations per epoch
17

3- Domain Adaptation (Given an initial BB of target):
❏ Generate a patch with resolution 263 × 263

❏ Adopt zoom in/out data augmentation to construct the support set

❏ Update tracker by a 5-step GD

❏ For each search region patch:

● Detector locates hundreds of candidate bounding boxes

● Standard post-processing pipeline: Shape penalty and cosine window functions

● Tracking result: Candidate box with the highest score
18

3- Domain Adaptation (Given an initial BB of target):

❏ During tracking (40 FPS on a single NVIDIA P100 GPU):

● Gradually enlarge support set

❏ Online updating (on updated support set & 1-step GD to maintain a high speed):

● After every n = 10 frames or when a distracting peak is detected (peak-to-sidelobe
is greater than 0.7)

● Tracking result above a predefined threshold, it will be added into the support set

● Buffer at most 30 training images in the support set

● Earlier samples, except the initial one, will be discarded

19

FCOS-MAML: Training Procedure

20

Training image Testing image

Baseline detector: Standard GD

FCOS-MAML: Training Procedure

21

❏ MAML detector convergences quickly and has strong generalization ability

Baseline detector: Standard GD

Experiments on OTB-100 Dataset:

22

Experiments on VOT-2018 Dataset:

23

Experiments on TrackingNet & LaSOT Datasets:

24

AUC of Success Plot
Normalized Precision (N-Prec.)

Thanks for your attention.

Questions / Answers

25

