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Current Approach
• In image processing, CNNs process a 

local neighborhood in convolutional 
layers

• In sequential data, recurrent operations 
are also applied to local data

• Signals are then propagated through the 
network by repeated application of 
these operations

• However, repeated application can be
• Computationally expensive
• Causes optimization difficulties
• Make multi-hop dependency 

modeling difficult
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The Concept
• Proposal: Non-local operations

• Efficient, simple, and generic 
operation for capturing long-range 
dependencies in deep networks

• Computes the response at a 
position as a weights sum of the 
features at all positions in the input 
feature maps

• ‘Positions’ can be in time or space
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Advantages
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• While convolutional and recurrent 
operations progress information through 
the network, non-local operations 
capture long-range dependencies 
directly – they calculate interactions 
between two positions regardless of 
distance

• Non-local operations are more efficient 
than multiple convolutions or recurrent 
operations

• Non-local operations maintain variable 
input sizes, and can be combined with 
other operations



Formulation
• A generic non-local operation in deep 

neural networks is given as (1)
• Here, j enumerates all positions in the 

input signal
• Compare this to a convolutional 

operation, that sums up weighted 
input in a local neighborhood

• Or, to a recurrent operation that is 
of ten based on preceding and 
subsequent time steps

• NOT a FC layer – here, responses are 
computed based on re lat ionships 
between locations
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i: index of an 
output position

j: index that 
enumerates 
all positions

x: the input 
signal

y: the output 
signal

C(x): 
normalization 
factor

g: unary 
function; 
computes a 
representation 
of the input 
signal at j

f: pairwise 
function, 
computes a 
scalar 
between i and 
all j



Instantiations
• What to use for f and g?
• Gaussian

• Embedded Gaussian

• Dot Product
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• Concatenation



Non-local Block
• Equation (1) is wrapped in a non-local 

block for incorporation into existing 
architectures
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Residual connection
1x1x1 Convolutions



Networks and Implementation 
Details

2D ConvNet Baseline (C2D)

Video Classification Models

Inflated 3D ConvNet (I3D)
• Kernels are inflated to third dimension 

(k*k becomes t*k*k, spanning t frames)

Non-local Network
• Described non-local blocks are inserted 

into C2D or I3D
• Models trained on ImageNet using 32-

frame input clips
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Experiments on Video 
Classification

Kinetics
• ~246k training videos, ~20k validation videos with 400 human action categories

Results
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Instantiations
• Different instantiations are compared
• Adding 1 non-local block improves performance 

over baseline
• As can be seen, the addition of a non-local 

block is insensitive to instantiations
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Stages
• A single non-local block was added to different 

instantiations
• Additions early in the network show similar 

improvements
• A somewhat smaller improvement is shown 

when applied to res5, likely due to small spatial 
size (7x7)
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Deeper with Non-Local Blocks
• Multiple non-local blocks were added to the 

baseline model
• In general, it was found that more non-local 

blocks lead to better results
• Results show this is not solely due to increased 

model depth
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Non-local Blocks in Spacetime
• In space only, non-local blocks only considers 

single-frame (only sum over j for frame i)
• In time-only, reverse
• In general, space and time better than baseline, 

but worse than spacetime
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Non-local Net vs. 3D ConvNet
• Non-local nets and 3D ConvNets are both ways 

to extend models to temporal dimension
• Non-local blocks found to be more accurate 

than 3D ConvNet, with less computational 
requirement
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Non-local 3D ConvNet
• Non-local blocks were then added to the 3D 

ConvNet architecture
• Again, increased performance was observed
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Longer Sequences
• Longer input video sequences are examined
• 128 frames
• All models have better results on longer inputs
• NL I3D maintains advantage over baselines
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Comparison to SOTA
• NL method surpasses existing methods



Experiments on COCO
Results
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COCO
• Static image recognition; object detection/segmentation and human pose estimation (keypoint 

detection)

Object Detection and Instance Segmentation
• NL block added to Mask R-CNN model
• 3 different backbones tested
• Addition of non-local block improved 

performance in all cases, in both boxing and 
masking

• NL blocks are complementary to increasing 
model capacity

• Gain is at a small cost (<5% more additional 
computation)



Experiments on COCO
Results
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COCO
• Static image recognition; object detection/segmentation and human pose estimation (keypoint 

detection)

Keypoint Detection
• Four non-local blocks inserted into Mask R-CNN 

model (one NL block after every 2 convolutional 
layers)

• Performance is again increased in all categories



Conclusion
• Long-range dependencies can be 

captured using the described non-local 
operations

• Non-local operations in video 
classification, object 
detection/segmentation, and keypoint 
estimation can increase performance at 
small computational cost
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