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A versatile deep generative model for multiple purpose in human body
analysis:

e Human image reconstruction
e Human image generation

e Pose transfer

e Pose estimation

In @ semi-supervision manner.
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Preliminaries

e \Variational AutoEncoder (VAE)
e Conditional VAE

e Semi-supervised CVAE
e VAEGAN
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Conditional VAE
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Semi-supervised CVAE
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CVAE-GAN
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Methods

e Conditional-DGPose

o  Full supervision

e Semi-DGPose

o Semi-supervision



Architecture of Conditional-DGPose
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Applications of Conditional-DGPose

1.Reconstruction
2.Pose transfer
3. Conditional generation
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(c) Conditional image generation.




Architecture of Semi-DGPose
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Mapper: an offline-learned neural unit which maps pose vector to pose heatmap.

Loss = Loss_unlabel + Loss_label
Loss_unlabel = KL (top) + KL (bottom) + L1-norm + Adversarial
Loss_label = KL (top) + Pose regression loss + L1_norm + Adversarial



Applications of Semi-DGPose

1. Pose estimation

2. Reconstruction
3.Indirect Pose transfer
4.Conditional generation
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(a) Pose estimation.
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With 25%, 50%, 75%, 100% of supervision.
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Direct manipulation by change person’s height.

(b) (© (d) (e) ()

Image reconstruction with 100%, 75%, 50%, 25% of supervision,
and Conditional-DGPose.
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(c) Image generation.
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e Human3.6 M

o 317,989 and 1280 images for training and testing
o Resolution of 1000 x 1000

e ChictopicalPlus

o 23,011 and 2873 images for training and testing
o Resolution of 286 x 286

e DeepFashion
o 44,950 and 6560 images for training and testing
o Resolution of 256 x 256
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Metrics

e Image quality of Reconstructions
o PSNR and SSIM
o The higher, the better

e Accuracy of reconstructed poses

o Extract pose from reconstructed image, and compare it to the ground truth pose
o PCK. The higher, the better.

e Accuracy of pose estimation (Semi-DGPose)
o PCK



Results of Conditional-DGPose
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Results of Conditional-DGPose

Table 2 Image quality on ChictopiaPlus

PSNR SSIM
Conditional-DGPose 21.33 0.88 .
ClothNet-body (Lassner et al. 2017) 16.89 0.82 Image Qual |ty

Best result is shown in bold

Quantitative evaluation w.r.t. image quality, showing that our method
outperforms (Lassner et al. 2017) considering both metrics, the PSNR
and the SSIM
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Fig. 20 Accuracy of Poses on ChictopiaPlus. The PCK scores over
reconstructed images of our Conditional-DGPose (blue) significantly
outperforms the ClothNet-body (Lassner et al. 2017) (red). Detection
rate represents the percentage of joints correctly relocated in the recon-
structions (Color figure online)



Results of Conditional-DGPose



Image reconstruction




Results of Conditional-DGPose

Table 3 Image quality on DeepFashion

PSNR SSIM
Conditional-DGPose 18.38 0.79 I I .
PG? (Ma et al. 2017) 18.96 0.83 mage Qua Ity

Best result is shown in bold

Quantitative evaluation w.r.t. image quality, showing that our method
presents a performance only slightly below the baseline (Maetal. 2017),
considering both metrics, the PSNR and the SSIM, despite the fact it
tackles a significantly more complex task than image-to-image transla-
tion
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Results of Semi-DGPose



Different level of supervision

Table 4 Image quality on Human3.6M

Level of supervision PSNR SSIM
100% 22.27 0.89
75% 21.49 0.87
50% 21.36 0.86
25% 20.06 0.83

Quantitative evaluations of the Semi-DGPose with different levels of
supervision using the PSNR and SSIM metrics
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Different methods

Table 5 Image quality on DeepFashion

PSNR SSIN
Semi-DGPose 16.84 0.76
Conditional-DGPose 18.38 0.79
PG?2 (Ma et al. 2017) 18.96 0.83

Best result is shown in bold
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