Structured Prediction Helps 3D Human Motion Modelling

-ICCV 2019 -ETH Zürich

June 21, 2020

Chuan Guo

Method

Datasets and Models

Evaluation on Human3.6M

Motivation

Contribution

- Main contribution:
 - Novel structured prediction layer which incorporate skeleton hierarchy.
 - This prediction layer is agnostic to the underlying network.

- Others:
 - Evaluations on Human3.6 and AMASS datasets.

Method

Datasets and Models

Evaluation on Human3.6M

Structured Prediction Layer

x_t is pose vector at t step.

K is the number of joints.

$$p_{\theta}(\boldsymbol{x}_t) = \prod_{k=1}^{K} p_{\theta}(\boldsymbol{x}_t^{(k)} \mid \text{parent}(\boldsymbol{x}_t^{(k)}), \boldsymbol{h}_t)$$

Figure 2: SPL overview. Given the context h_t of past frames, joint predictions $\hat{x}_t^{(k)}$ are made hierarchically by following the kinematic chain defined by the underlying skeleton. Only a subset of joints is visualized for clarity.

$$p_{ heta}(oldsymbol{X}) = \prod_{t=1}^{T} \prod_{k=1}^{K} p_{ heta}(oldsymbol{x}_t^{(k)} \mid extsf{parent}(oldsymbol{x}_t^{(k)}), oldsymbol{h}_t)$$

Structured Prediction Layer

Per joint Loss

Typically, the loss is calculated on pose vector space.

Here, loss is calculated for each joint first, and then summed up for the entire motion.

Method

Datasets and Models

Evaluation on Human3.6M

Experiment(dataset)

Input sequences are 2 seconds(120 frames), targets are 400ms(24 frames)

- Human3.6
 - o 632, 894 frames
 - 120 test samples across 15 categories
 - o 21 joints

- AMASS
 - o 9, 084, 918 frames
 - 3,304 test samples
 - 15 joints

Models

- Seq2seq: input poses are represented as **axis angle**(exponential map);
 - On human motion prediction using recurrent neural networks.(CVPR 2017)

- QuarterNet: inputs are quaternion representation.
 - Modeling human motion with quaternion based neural networks.(IJCV 2020)

- RNN: inputs are rotation matrices.
 - Single layer RNN network.

Method

Datasets and Models

Evaluation on Human3.6M

Evaluation on Human3.6M

	Walking				Eating				Smoking				Discussion			
milliseconds	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400
LSTM-3LR [7]	0.77	1.00	1.29	1.47	0.89	1.09	1.35	1.46	1.34	1.65	2.04	2.16	1.88	2.12	2.25	2.23
SRNN [14]	0.81	0.94	1.16	1.30	0.97	1.14	1.35	1.46	1.45	1.68	1.94	2.08	1.22	1.49	1.83	1.93
Zero-Velocity [20]	0.39	0.68	0.99	1.15	0.27	0.48	0.73	0.86	0.26	0.48	0.97	0.95	0.31	0.67	0.94	1.04
AGED [33]	0.22	0.36	0.55	0.67	0.17	0.28	0.51	0.64	0.27	0.43	0.82	0.84	0.27	0.56	0.76	0.83
Seq2seq-sampling-sup [20]	0.28	0.49	0.72	0.81	0.23	0.39	0.62	0.76	0.33	0.61	1.05	1.15	0.31	0.68	1.01	1.09
Seq2seq-sampling-sup-SPL	0.23	0.37	0.53	0.61	0.20	0.32	0.52	0.67	0.26	0.48	0.92	0.90	0.29	0.63	0.90	0.99
Seq2seq-sampling [20]	0.27	0.47	0.70	0.78	0.25	0.43	0.71	0.87	0.33	0.61	1.04	1.19	0.31	0.69	1.03	1.12
Seq2seq-sampling-SPL	0.23	0.38	0.58	0.67	0.20	0.32	0.52	0.66	0.26	0.48	0.92	0.90	0.30	0.64	0.91	0.99
QuaterNet [25]	0.21	0.34	0.56	0.62	0.20	0.35	0.58	0.70	0.25	0.47	0.93	0.90	0.26	0.60	0.85	0.93
QuaterNet-SPL	0.22	0.35	0.54	0.61	0.20	0.33	0.55	0.68	0.25	0.47	0.91	0.88	0.26	0.59	0.84	0.91
RNN	0.30	0.48	0.78	0.89	0.23	0.36	0.57	0.72	0.26	0.49	0.97	0.95	0.31	0.67	0.95	1.03
RNN-SPL	0.26	0.40	0.67	0.78	0.21	0.34	0.55	0.69	0.26	0.48	0.96	0.94	0.30	0.66	0.95	1.05

Euler angle metric

Method

Datasets and Models

Evaluation on Human3.6M

Evaluation on AMASS

Report accumulated error util time step t, instead of error at time step t.

• Joint Angle Difference: error of rotation matrices

• Positional error: error of 3D joint positions

• PCK: percentage of predicted joints lying within a spherical threshold p around the target joint position

		E	uler	Joint Angle					Posit	ional		PCK (AUC)				
milliseconds	100	200	300	400	100	200	300	400	100	200	300	400	100	200	300	400
Zero-Velocity [20]	1.91	5.93	11.36	17.78	0.37	1.22	2.44	3.94	0.14	0.48	0.96	1.54	0.86	0.83	0.84	0.82
Seq2seq [20]*	1.46	5.28	11.46	19.78	0.24	0.95	2.16	3.87	0.09	0.35	0.80	1.41	0.91	0.87	0.87	0.83
Seq2seq-SPL	1.57	5.00	10.01	16.43	0.27	0.94	2.01	3.45	0.10	0.36	0.79	1.36	0.91	0.87	0.87	0.84
Seq2seq-sampling [20]*	1.71	5.15	9.71	15.15	0.32	1.00	1.97	3.14	0.12	0.39	0.77	1.23	0.88	0.86	0.87	0.85
Seq2seq-sampling-SPL	1.71	5.13	9.60	14.86	0.31	0.97	1.91	3.04	0.12	0.38	0.74	1.18	0.89	0.86	0.88	0.85
Seq2seq-dropout	1.26	4.41	9.24	15.46	0.23	0.84	1.82	3.13	0.09	0.33	0.71	1.21	0.92	0.88	0.88	0.85
Seq2seq-dropout-SPL	1.26	4.26	8.67	14.23	0.23	0.81	1.74	2.96	0.09	0.32	0.68	1.16	0.92	0.89	0.89	0.86
QuaterNet [25]*	1.49	4.70	9.16	14.54	0.26	0.89	1.83	3.00	0.10	0.34	0.71	1.18	0.90	0.87	0.88	0.85
QuaterNet-SPL	1.34	4.25	8.39	13.43	0.25	0.83	1.71	2.83	0.09	0.32	0.67	1.10	0.91	0.88	0.89	0.86
RNN	1.69	5.23	10.18	16.29	0.31	1.05	2.17	3.62	0.12	0.41	0.85	1.43	0.89	0.85	0.86	0.83
RNN-SPL	1.33	4.13	8.03	12.84	0.22	0.73	1.51	2.51	0.08	0.28	0.57	0.96	0.93	0.90	0.90	0.88

Even a single layer RNN could outperform state-of-art methods on the large and diverse dataset.

Thanks!