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Figure 1. With just a single image as input, our proposed DimensionX can generate highly realistic videos and 3D/4D environments that
are aware of spatial and temporal dimensions.
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In summary, our main contributions are: Time
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* We present DimensionX, a novel framework for generat-
ing photorealistic 3D and 4D scenes from only a single
image using decoupled video diffusion.

» We propose ST-Director, which decouples the spatial | |
and temporal priors in video diffusion models by learn- Video Space 1 DimensionX (Ours) Fix Time Fix Camera
ing (spatial and temporal) dimension-aware modules with  Fjoyre 2. Ilustration of DimensionX. Our key insight is to de-
our curated datasets. We further enhance the hybrid-  couple the spatial and temporal factors in video diffusion. The
dimension control with a training-free composition ap-  figure is reproduced from CAT4D [60].
proach according to the essence of the video diffusion
denoising process.

* To bridge the gap between video diffusion and real-world

Camera
Camera
I
X

scenes, we design a trajectory-aware mechanism for 3D process. As shown in Fig. 2, our key insight is to de-
generatlon and an ldentlty_preser\;lng denOISlng approach Couple the temporal and Spatlal faCtorS mn Vldeo dlfoSlon,

for 4D generation, enabling more realistic and control- thus achieving precise control over each individually and
in combination. To achieve the dimension-aware control,

lable S(_:ene Syntl.lesm. ) ) ) we establish a comprehensive framework to collect datasets
» Extensive experiments manifest that our DimensionX de- that vary in spatial and temporal dimensions. With these

livers superior performance in video, 3D, and 4D genera-

tion compared with baseline methods.
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Figure 3. Pipeline of DimensionX. Our framework is mainly divided into three parts. (a) Controllable Video Generation with ST-
Director. We introduce ST-Director to decompose the spatial and temporal parameters in video diffusion models by learning dimension-
aware LoRAs on our collected dimension-variant datasets. (b) 3D Scene Generation with S-Director. Given one view, a high-quality 3D
scene is recovered from the video frames generated by S-Director. (c¢) 4D Scene Generation with ST-Director. Given a single image, a
temporal-variant video is produced by T-Director, from which a key frame is selected to generate a spatial-variant reference video. Guided
by the reference video, per-frame spatial-variant videos are generated by S-Director, which are then combined into multi-view videos.
Through the multi-loop refinement of T-Director, consistent multi-view videos are then passed to optimize the 4D scene.



Methodology - Building Dimension-variant Dataset

Trajectory planning for spatial-variant data. Camera To decouple spatial and temporal parameters in video dif-
motion in 3D space has 6 degrees of freedom (DoF), fusion, we introduce a framework to collect spatial- and
enabling 12 movement patterns through positive/negative temporal-variant videos from open-source datasets. No-
translations and rotations. Additionally, we include the or- tably, we employ a trajectory planning strategy for spatial-
bital motion pattern that circles subjects smoothly, offering variant data and flow guidance for temporal-variant data.

unique views beyond standard DoF movements. Please see

the visualization of our designed S-Director in Appendix E. ) ) ,
.. Flow guidance for temporal-variant data. To achieve the

To acquire the spatial-variant dataset, we propose re- temporal control, we aim to filter the temporal-variant data
constructing photorealistic 3D scenes and rendering videos to fine-tune the video diffusion model. Specifically, we use
consistent with our spatial variation tendency. To facilitate optical flow to identify static-camera videos. Fixed cam-
the selection and planning of rendering paths, we need to eras produce flow maps with large white areas (static back-
compute the coverage range of the cameras throughout the ground), while moving cameras show flow everywhere with
entire scene. Specifically, we utilize the Principal Compo- almost no white regions. This clear visual difference makes
nent Analysis (PCA) technique to compute the bounding optical flow an effective tool for classifying camera motion.
box of cameras in the scene. Another key component is Please see the figure illustration in Appendix E. Also a limitation?

to acquire the occupancy field of 3D scenes. With the 3D
scene, we render multi-view images and depth maps, and
use TSDF [10] to extract the mesh. The bounding box and
occupancy field help us to plan feasible rendering regions.

We conceptualize each video frame I;(u, v) as a projection
from a 4D space R? x R!, where u and v are the image
coordinates in the frame, and the 4D space consists of three
spatial dimensions x, vy, z and a temporal dimension ¢. In
this framework, the 4D space consists of a static background
and dynamic objects, which is represented as S(t) at time .



Methodology - ST-Director for Decoupled Video Generation

Each video frame at time ¢ is, therefore, a 2D projection
of this 3D scene structure onto the image plane, governed by
the camera’s parameters at that moment. To formalize this,
we define the projection function P¢ (), which projects the
3D scene S(t) onto a 2D image:

Ii(u,v) = Pc)(S(2)), (1)

where C'(t) represents the camera parameters at time ¢.

cise control. Speciﬁc—ally, we introduce two ortﬁogonal— ba-
sis directors: S-Director (Spatial Director) and T-Director
(Temporal Director), which allow us to separate spatial and

How to make them orthogonal?

3.2.1. Dimension-aware Decomposition

We systematically analyze the video content generation by
decomposing it into two fundamental dimensions: spatial
variations (camera movements through static scenes) and
temporal variations (object motions viewed from fixed cam-
eras). This structured decomposition enables us to sepa-
rately examine and model two core aspects of video dynam-
ics - the changing perspectives created by camera move-
ment and the temporal evolution of objects within static
views. By isolating these components, we can more ef-

Building on this decomposition framework, we map
videos from our spatial-variant dataset to the spatial rep-
resentation (fixed temporal content), while videos from the
temporal-variant dataset are mapped to the temporal repre-
sentation (fixed spatial viewpoint). In order to train the S-
Director and T-Director to generate videos with these spa-
tial and temporal structures, we employ LoRA [18], a fine-
tuning method that is both parameter-efficient and com-
putationally light, training each director separately on the
datasets to decouple the video diffusion. Specifically, the
S-Director is trained on the spatial-variant dataset, learning
patterns in which time is held constant (S(¢) = &y), thereby
generating videos with the pattern Iy(u,v) = Pey)(So)-
Similarly, the T-Director is trained on the temporal-variant
dataset, learning patterns where the camera remains station-
ary (C(t) = Cj), producing videos satisfying Zy(u,v) =
Pen(S(2)).



Methodology - ST-Director for Decoupled Video Generation

How to merge them?

frame sequences along its designated axis. However, most
videos naturally involve a blend of spatial and temporal ele-
ments, making it essential to combine both directors to cap-
ture multidimensional information in the 4D space, repre-
sented as I;(u,v) = Pc,(S(t)). To achieve the hybrid-
dimension control, we aim to merge the S-Director and T-
Director, allowing for the video generation along the spatial
and temporal dimensions. In pursuit of this goal, we ana- B - ~ 7T :
lyze the mechanics of the base model (See in Appendix E) oo e oo oo oo s o e e S v vy rrrrreee)
and each director’s denoising process by visualizing the at- “ ’
tention maps produced by the base model and both directors
(as shown in Fig. 4). We identify two key observations:

S-Director
Step 3 Step 0

Video

Step 0

Observation 1: The initial steps of the denoising process
are critical for defining the generated video.

From the attention maps, we observe that during the ini-
tial denoising stage, both the base model and two directors
create initial outlines aligned with final results. : PR =
Observation 2: Spatial information is constructed earlier Figure 4. Visualization of Attention Map. Starting from step 0,

T-Director
Step 3

Video

than temporal information. the early denoising steps have determined the outline and layouts
As shown in Fig. 4, we observe that the object motion of output videos. Specifically, the spatial component is recovered

synthesis is initially underdeveloped during the early de-
noising stage. Specifically, with S-Director, the attention
maps reveal that the structural outlines of the final video
appear much earlier than with temporal control.

earlier than the temporal information during the denoising process.



frame sequences along its designated axis. However, most
videos naturally involve a blend of spatial and temporal ele-
ments, making it essential to combine both directors to cap-
ture multidimensional information in the 4D space, repre-
sented as I;(u,v) = Pc,(S(t)). To achieve the hybrid-
dimension control, we aim to merge the S-Director and T-
Director, allowing for the video generation along the spatial
and temporal dimensions. In pursuit of this goal, we ana-
lyze the mechanics of the base model (See in Appendix E)
and each director’s denoising process by visualizing the at-
tention maps produced by the base model and both directors
(as shown 1n Fig. 4). We identify two key observations:

Observation 1: The initial steps of the denoising process
are critical for defining the generated video.

From the attention maps, we observe that during the ini-
tial denoising stage, both the base model and two directors
create initial outlines aligned with final results.
Observation 2: Spatial information is constructed earlier
than temporal information.

As shown in Fig. 4, we observe that the object motion
synthesis is initially underdeveloped during the early de-
noising stage. Specifically, with S-Director, the attention
maps reveal that the structural outlines of the final video
appear much earlier than with temporal control.

Methodology - ST-Director for Decoupled Video Generation

How to merge them?

Based on these two observations, we propose a training-
free approach, Switch-Once, a novel approach to compose
diverse LoRAs. This approach combines the S-Director and
T-Director to generate videos that seamlessly blend spatial
and temporal information, achieving a balanced synthesis
represented by I;(u,v) = Pc,(S(t)). Following Observa-
tion 2, we initiate the denoising process with the S-Director
to establish comprehensive camera motion across the scene.
Then, as indicated by Observation 1, we switch to the T-
Director after the initial steps (e.g. 3 in our experiments) of
the denoising process, thereby enhancing the dynamics of
generated videos. The resulting video, in Fig. 5 (4th col-
umn), demonstrates the effectiveness of our approach.




Methodology - 3D Scene Generation with S-Director

Built upon the S-Director, our video diffusion model is able
to generate controllable and consistent 3D frames from a
single image, allowing for the reconstruction of photoreal-
istic scenes. Specifically, to deal with where diverse and
flexible spatial variation, we introduce a trajectory-aware
mechanism to handle potential various camera movements,
including single-view and sparse-view settings.

Single-view Scene Generation. Given a single image I,
our goal is to reconstruct the 3D scene with generated video

frames {I ¢ }il, where /N represents the frame length. Al-
though current video diffusion models have shown potential
for long video generation, the total duration still falls far
short of the frame count required for real-world scene re-

construction. Specifically, the powerful open-source video
diffusion model (e.g. CogVideoX [65]) currently generates

a maximum of only 49 frames, whereas reconstructing a
large scene (e.g. 360 degree scene) typically requires hun-
dreds of multi-view images. To address this, we extend the
video diffusion model to generate 145 frames.

Sparse-view Scene Generation. In this setting, we pro-
pose incorporating a video interpolation model and an adap-
tive S-Director to achieve a smooth and consistent transi-
tion between the sparse views. First, we develop a video
diffusion model to generate the high-quality interpolated
video, which takes two images {I LI 2} as the start and end
frames. The objective function for the video diffusion pro-
cess is formulated as

Ldiffusion = ]Eztwp,ewN((),I),t [HE - GG(ZM t, z1, 22, C)”%] )
(2)
where z; is the noisy latent sequence, and €y represents
the model’s prediction of the noise at timestep ¢, condi-
tioned on the first and last frame latent: z; = &(I') and
2o = E(I?). With the interpolated video diffusion model,
we then train various S-Directors to provide refined cam-
era motion guidance, ensuring smooth and consistent tran-
sition between the sparse-view images. In particular, we
tailor two key strategies to fully leverage the guidance prior
carried in S-Directors: early-stopping training and adap-
tive trajectory-planning. The early-stopping strategy pre-
vents overfitting to target trajectories during training, while
adaptive trajectory-planning is used at inference to choose
the best matched S-Director based on camera pose differ-
ences, enabling the model to effectively handle input im-
ages from a wide range of angles. Following the original

3DGS pipeline [20], we adopt the loss function as follow:

Econf =C ()\lf'l + )\ssim['ssim + Alpipsﬁlpips) ) (3)

where C is confidence maps, and A, Agim, Aipips TEpresent
coefficients. Please refer to Appendix E for more details.



Equipped with spatial and temporal controlled video dif-
fusion, a 4D dynamic scene can be recovered from a sin-
gle image. A direct way is to stitch together the per-
frame spatial-variant videos of the temporal-variant video
into multi-view videos, which are then used to reconstruct
the 4D scene. However, maintaining consistency in the
background and object appearance across spatial-variant
videos is challenging. To address this difficulty, we design
an identity-preserving denoising strategy, including ref-
erence video latent sharing and appearance refinement, to
enhance the consistency of all spatial-variant videos.

Methodology - 4D Scene Generation with ST-Director

Given an input image /, our goal is to generate a photore-
alistic 4D scene with coherent dynamics and backgrounds.
First, we employ T-Director to generate a temporal-variant

: AN : : :
video {I ! }_i:1 for the input image, from which a reference
frame I,.r 1s chosen to produce the corresponding spatial-

: : K
variant video v, = {I I}izl’ where K represents the
number of cameras. Subsequently, v, is used to guide

the generation of spatial-variant videos across all temporal-

) ) YN . )
variant video frames {I i’} which are then combined

i=1’
. . : AN YN

1 1
into multi-view videos {{Ij }i=1}j=1' {Ij }1:1 represents

the temporal-variant video from the camera ;. Despite guid-
ance from the reference video, minor shape inconsistencies
still exist, causing temporal jitter and inter-view misalign-
ment. To mitigate these issues, we introduce an appearance
refinement to further enforce the consistency across multi-
view videos. With consistent multi-view videos, we choose
deformable 3DGS [57] to model the dynamic scene.



Reference Video Latent Sharing. Through our empiri-
cal study, we propose choosing the reference frame based
on the dynamic object’s mask and the magnitude of optical
flow values, allowing us to acquire a frame that best encom-
passes the dynamic region. With the reference frame /.,
S-Director is applied to produce the corresponding spatial-
variant video v,r. Applying the forward diffusion process
on v, we derive the noisy latent code z,. as following:

Zref = \/Otz0 + V1 — aze, € ~N(0,1), (4)

where zo = E£(v,f), representing the compressed latent by
the encoder &, and /a; determines the strength of using
the reference video. Starting from the same initialization
latent z,, all frames are subsequently denoised to produce
spatial-variant videos with strong coherence. Moreover, we
propose blending the denoised z; of each frame with the
reference video latent z,,¢; at the early denoising steps:

zt = Azt + (1 — A) Zpeft S)

where A is an adjustable parameter.

Methodology - 4D Scene Generation with ST-Director

Appearance Refinement. Inspired by the image-to-
image translation SDEdit [33], we apply random noise to
each multiview video v; = {I ]’}‘:\; 1, and perform multi-
step denoising, acquiring smooth and high-quality videos
with the video diffusion prior:

'v;-eﬁ"e = fo (v; + €(to) 50, ), (6)

where t; represents the forward diffusion timestep, and
'v;eﬁ“" is the refined video with the denoise function fy of
T-Director. In addition, we repeat the refine process during
the middle timestep to enhance the smoothness.

Having acquired consistent multi-view videos , we use
the deformable 3DGS [57] to reconstruct the 4D scene.



Experiments

Implementation Details. We choose the open-source 12V
model CogVideoX [65], which adopts the diffusion trans-
former architecture, as our video diffusion model. For the
ST-Director training, we set the LoRA rank to 256, and fine-
tune the LoRA layers for 3000 steps at the learning rate le-3
on 100 dimension-variant videos. To enlarge video frames,
we modify the RoPE [44] positional embedding to extend
the video length to 145 frames. For the training of video
interpolation models, we first full fine-tune the base model
for 2,000 steps at the learning rate Se-5, then we train the
S-Director but for only 1,000 steps.

Datasets. In our whole framework, our video diffusion
model is mainly trained on three datasets: DL3DV-10K
[26], OpenVid [35], and RealEstate-10K [75]. To verify
the 3D generation ability of DimensionX, we compare our
approach with other baselines on Tank-and-Temples [21],
MipNeRF360 [5], NeRF-LLFF [34], and DL3DV-10K [26].



EX p e ri m e ntS Video Generation Consistency T Dynamic T Aesthetic T

CogVideoX [65] 93.56 11.76 57.81
. . . : Dream Machine 1.6 93.69 38.24 68.96
Baselines and Evaluation Metrics. We compare our Di- Ows plid paapess a2

mensionX with the original CogVideoX [65](open-source)
and Dream Machine 1.6 (closed-source product). Following
the previous benchmark VBench [19], we evaluate the Sub-
ject Consistency, Dynamic Degree, and Aesthetic Score.

15_1!1

Table 2. Quantitative comparison for video generation.

Sp atlal Vldeo Temporal Video

Spatlal Temporal Vldeo

Orbit Left™ v LR +Orhit Right Orbit Right
Figure 5. Qualitative results in dimension-aware video generation. For spatial videos, the camera moves while objects stay still; for
temporal videos, objects move with a static camera. A spatial-temporal video combines both, with the camera following a trajectory as
objects move.



Experiments

3D Scene Generation

Baselines and Evaluation Metrics. In the single-view set-
ting, we compare our approach with two generative meth-
ods: ZeroNVS [40] and ViewCrafter [69]. For the sparse-
view scenario, we select two sparse-view reconstruction and
one sparse-view generation methods: DNGaussian [23], In-
stantSplat [13], and ViewCrafter [69]. We adopt PSNR,
SSIM, and LPIPS as the metric for our quantitative results.
Specifically, in both single-view and sparse-view settings,
we begin by reconstructing the 3D scene, followed by cal-
culating the metrics using renderings from novel views.

Methods Tank and Temples MipNeRF360 LLFF DL3DV
PSNR1 SSIM? LPIPS| PSNRT SSIMt LPIPS| PSNRt SSIMT LPIPS| PSNR+ SSIM1 LPIPS |
ZeroNVS [40] 1231 0301  0.567 1584 0327 0536 1562 0497 0354 1239 0251 0559
Single-View  ViewCrafter [69] ~ 15.18 0499 0319 1565 0404 0378 1756 0620 0337 1478 0422 0417
Ours 1711 0613 0.199 1891 0527 0333 2038 0744 0200 1828 0642 0215
DNGaussian [23] 1213 0292 0511 1521 0127 0632 1751 058  0.409 1499 0286 0432
Soarse.Vi InstantSplat [13] 1870  0.634 0258 1680 0574 0296 2233 0818  0.149 1830 0691 0222
PATSE-VIEW  ViewCrafter [69] 1876 0637 0216 1849 0691 0212 2160 0823  0.155 19.19 0686  0.196
Ours 2042 0668 0185 2021 0713 0184 2511 0913 0067  21.69 0780  0.124

Table 1. Quantitative comparison of single-view and sparse-view scenarios. Our approach outperforms other baselines in all metrics

both in terms of single-view and sparse-view (two-view) settings.

Figure 6. Qualitative results in sparse-view 3D generation.

Input Image :

ZeroNVS ReconFusion (3 views) CAT3D

DimensionX (Ours)

Figure 7. Qualitative comparison with NVS methods. The input
images and results of baselines are from the project of CAT3D.



Experiments

4D Scene Generation

Baselines and Evaluation Metrics. To the best of our
knowledge, there is currently no open-source work dedi-
cated to generating multi-view videos from a single image.
Following previous works [3, 48], we choose SV4D [62]
and multi-view images + CogVideoX as baselines. Specifi-
cally, CLIP-T and CLIP-F are used to assess visual quality,
while Mat. Pix.(K) and CLIP-V evaluate view synchroniza-
tion. See Appendix E for more details on these metrics.

Visual Quality | View Synchronization
Method CLIP-T 1+ CLIP-F 1 | Mat. Pix.(K) * CLIP-V 1
SV4D 30.97 98.31 294.3 87.8
M.V. Img+CogVideoX  34.05 98.67 323.0 96.1
Base 32.59 98.77 563.7 96.2
+ Ref Video 34.50 99.20 766.0 97.8
+ Both 35.83 99.38 834.3 98.3

Table 4. 4D quantitative comparison & ablation.
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Figure 8. Qualitative results of multi-view video generation.
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EX p e ri ments Method | PSNRT  SSIMT  LPIPS]

Ours 20.42 0.668 0.185
w/o. early stopping 17.93 0.492 0.311
w/o. S-Director 17.32 0.521 0.278
Ablation Study
Table 3. Ablation study for 3D generation.
Visual Quality | View Synchronization
w. S-Director w/o. S-Director -
Input Images Generated video Generated video Rendering 1 Method CLIP-T 1 CLIP-F 1| Mat. Pix.(K) T CLIP-V 1
' PR 2 Sv4D 30.97 98.31 2943 87.8
M.V. Img+CogVideoX 3405  98.67 323.0 96.1
Base 32.59 98.77 563.7 96.2
+ Ref Video 34.50 99.20 766.0 97.8
+ Both 35.83 99.38 834.3 98.3

| (a) Ablation of S Director

1000 Steps Table 4. 4D quantitative comparison & ablation.

Trajectory-aware mechanism for 3D generation. As il-
lustrated in Fig. 10 (a), when handling the large-angle
sparse view, the absence of S-Director often results in the

“Janus problem”, where multiple heads are generated, sig-
% nificantly degrading reconstruction quality (shown in Tab.
3). Moreover, the result in Fig. 10 (b) indicates that, in com-

(b) bl ation of carly stopping parison to training for 5000 steps, only training S-Director
. . . . for 1000 steps is able to handle more complex and flexible
Fi gure 10. Ablation Stlldy on the Sparse-view 3D generatlon. inputs, showcasing DimensionX’s generalization ability.
Identity-preserving denoising for 4D generation. As pre-
sented in Tab. 4, through reference video latent sharing
and appearance refinement, we achieve high consistency in
global background, subject motion, and detailed appearance
across frames. Please see Appendix I for more ablations.
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