Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion

Boyuan Chen MIT CSAIL boyuanc@mit.edu Diego Marti Monso*
Technical University of Munich
diego.marti@tum.de

Yilun Du MIT CSAIL yilundu@mit.edu

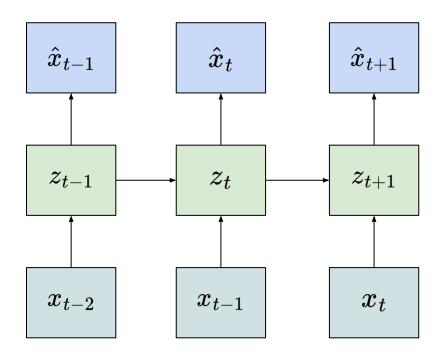
Max Simchowitz
MIT CSAIL
msimchow@mit.edu

Russ Tedrake MIT CSAIL russt@mit.edu Vincent Sitzmann MIT CSAIL sitzmann@mit.edu

NeurIPS 2024

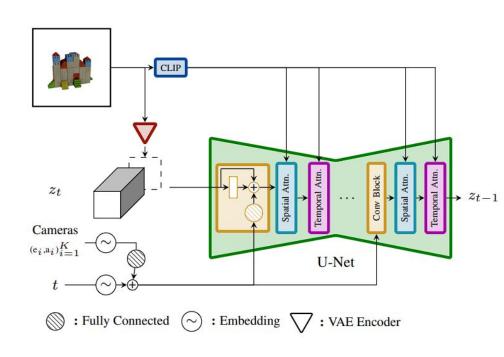
Sequence Models

Autoregressive (Next-Token) Sequence Models



Teacher Forcing \rightarrow \times unstable long rollouts

Full Sequence Diffusion Models



Full-Sequence Diffusion $\rightarrow \times$ non-causal

Diffusion Forcing = Teacher Forcing + Diffusion

Unifying time-axis masking (teacher forcing) and noise-axis masking (diffusion)

3.1 Noising as partial masking

Recall that *masking* is the practice of occluding a subset of data, such as patches of an image [27] or timesteps in a sequence [15, 49], and training a model to recover unmasked portions. Without loss of generality, we can view any collection of tokens, sequential or not, as an ordered set indexed by t. Training next-token prediction with teacher forcing can then be interpreted as masking each token \mathbf{x}_t at time t and making predictions from the past $\mathbf{x}_{1:t-1}$. Restricted to sequences, we refer to all these practices as *masking along the time axis*. We can also view full-sequence forward diffusion, i.e., gradually adding noise to the data $\mathbf{x}_{1:T}^0 \equiv \mathbf{x}_{1:T}$, as a form of *partial masking*, which we refer to as *masking along the noise axis*. Indeed, after K steps of noising, $\mathbf{x}_{1:T}^K$ is (approximately) pure white noise without information about the original data.

We establish a unified view along both axes of masking (see Fig. 2). We denote $\mathbf{x}_{1:T}$ for a sequence of tokens, where the subscript indicates the time axis. As above, $\mathbf{x}_t^{k_t}$ denotes \mathbf{x}_t at noise level k_t under the forward diffusion process (2.1); $\mathbf{x}_t^0 = \mathbf{x}$ is the unnoised token, and \mathbf{x}_t^K is white noise $\mathcal{N}(0, \mathbf{I})$. Thus, $(\mathbf{x}_t^{k_t})_{1 \le t \le T}$ denotes a sequence of noisy observations where each token has a different noise level k_t , which can be seen as the degree of partial masking applied to each token through noising.

Diffusion Forcing = Teacher Forcing + Diffusion

Unifying time-axis masking (teacher forcing) and noise-axis masking (diffusion)

3.2 Diffusion Forcing: different noise levels for different tokens

Diffusion Forcing (DF) is a framework for training and sampling arbitrary sequence lengths of noisy tokens $(\mathbf{x}_t^{k_t})_{1 \leq t \leq T}$, where critically, the noise level k_t of each token can vary by time step. In this paper, we focus on time series data, and thus instantiate Diffusion Forcing with causal architectures (where $\mathbf{x}_t^{k_t}$ depends only on past noisy tokens), which we call Causal Diffusion Forcing (CDF). For simplicity, we focus on a minimal implementation with a vanilla Recurrent Neural Network (RNN) [11]. Potential transformer implementation of Diffusion Forcing is also possible but we defer its discussion to Appendix B.1.

The RNN with weights θ maintains latents \mathbf{z}_t capturing the influence of past tokens, and these evolve via dynamics $\mathbf{z}_t \sim p_{\theta}(\mathbf{z}_t|\mathbf{z}_{t-1},\mathbf{x}_t^{k_t},k_t)$ with a recurrent layer. When an incoming noisy observation $\mathbf{x}_t^{k_t}$ is made, the hidden state is updated in a Markovian fashion $\mathbf{z}_t \sim p_{\theta}(\mathbf{z}_t|\mathbf{z}_{t-1},\mathbf{x}_t^{k_t},k_t)^2$. When $k_t = 0$, this is the posterior update in Bayes filtering; whereas when $k_t = K$ (and \mathbf{x}_t^K is pure noise and thus uninformative), this is equivalent to modeling the "prior distribution" $p_{\theta}(\mathbf{z}_t \mid \mathbf{z}_{t-1})$ in Bayes filtering. Given latent \mathbf{z}_t , an observation model $p_{\theta}(\mathbf{x}_t^0|\mathbf{z}_t)$ predicts \mathbf{x}_t .

Diffusion Forcing = Teacher Forcing + Diffusion

Unifying time-axis masking (teacher forcing) and noise-axis masking (diffusion)

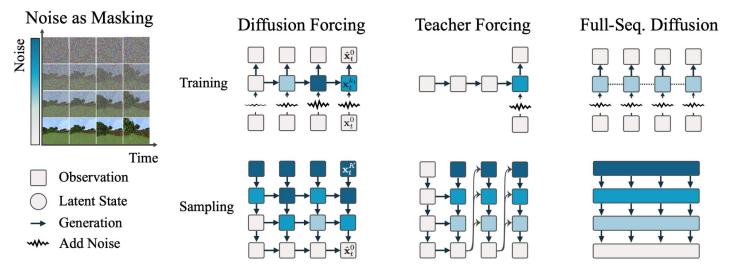


Figure 2: **Method Overview.** Diffusion Forcing trains causal sequence neural networks (such as an RNN or a masked transformer) to denoise flexible-length sequences where each frame of the sequence can have a *different* noise level. In contrast, next-token prediction models, common in language modeling, are trained to predict a single next token from a *ground-truth* sequence (teacher forcing [65]), and full-sequence diffusion, common in video generation, train non-causal architectures to denoise all frames in a sequence at once with the *same* noise level. Diffusion Forcing thus *interleaves* the time axis of the sequence and the noise axis of diffusion, unifying strengths of both alternatives and enabling completely new capabilities (see Secs. 3.2,3.4).

Training and Sampling

12: end loop

Algorithm 1 Diffusion Forcing Training **Algorithm 2** DF Sampling with Guidance 1: **Input:** Model θ , scheduling matrix \mathcal{K} , initial latent 1: **loop** Sample tajectory of observations $(\mathbf{x}_1, ..., \mathbf{x}_T)$. \mathbf{z}_0 , guidance cost $c(\cdot)$. 3: 2: Initialize $\mathbf{x}_1, \dots, \mathbf{x}_T \sim \mathcal{N}(0, \sigma_K^2 I)$. for t = 1, ..., T do \in 3: for row m = M - 1, ..., 0 do Sample independent noise level k_t $\{0, 1, ..., K\}$ 4: **for** t = 1, ..., T **do** 5: $\mathbf{z}_t^{\text{new}} \sim p_{\theta}(\mathbf{z}_t \mid \mathbf{z}_{t-1}, \mathbf{x}_t, \mathcal{K}_{m+1,t}).$ 5: $\mathbf{x}_{t}^{k_{t}} = \text{ForwardDiffuse}(\mathbf{x}_{t}, k_{t})$ 6: $k \leftarrow \mathcal{K}_{m,t}, \mathbf{w} \sim \mathcal{N}(0, \mathbf{I}).$ Define $\epsilon_t = \frac{\mathbf{x}_t^{k_t} - \sqrt{\bar{\alpha}_{k_t}} \mathbf{x}_t}{\sqrt{1 - \bar{\alpha}_{k_t}}}$ 6: 7: $\mathbf{x}_t^{\text{new}} \leftarrow \frac{1}{\sqrt{1-\bar{\alpha}_k}} (\mathbf{x}_t - \frac{1-\alpha_k}{\sqrt{1-\bar{\alpha}_k}} \epsilon_{\theta}(\mathbf{z}_t^{\text{new}}, \mathbf{x}_t, k)) +$ $\sigma_k \mathbf{w}$ Update $\mathbf{z}_t \sim p_{\theta}(\mathbf{z}_t | \mathbf{z}_{t-1}, \mathbf{x}_t^{k_t}, k_t)$. 7: 8: Update $\mathbf{z}_t \leftarrow \mathbf{z}_t^{\text{new}}$. Set $\hat{\epsilon}_t = \epsilon_{\theta}(\mathbf{z}_{t-1}, \mathbf{x}_t^{k_t}, k_t)$ 9: end for 9: end for $\mathbf{x}_{1:H} \leftarrow \text{AddGuidance}(\mathbf{x}_{1:H}^{\text{new}}, \nabla_{\mathbf{x}} \log c(\mathbf{x}_{1:H}^{\text{new}}))$ 10: $L = MSELoss([\hat{\epsilon}_1, ..., \hat{\epsilon}_n], [\epsilon_1, ..., \epsilon_n])$ 10: 11: end for Backprop with L and update θ 11: 12: **Return** $\mathbf{x}_{1:T}$.

Key Ingredient – 2D Noise Schedule Grid

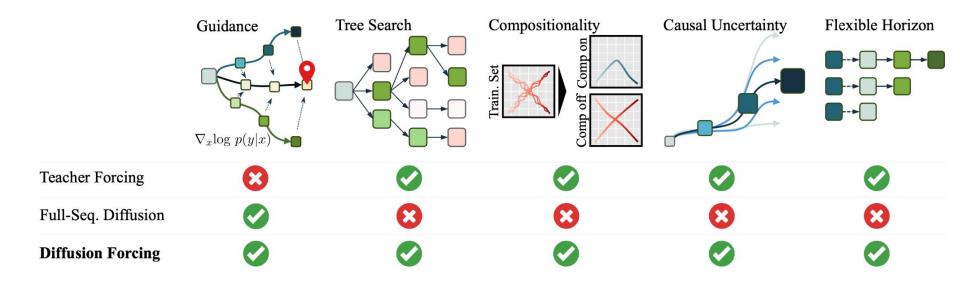
Sampling. Diffusion Forcing sampling is depicted in Algorithm 2 and is defined by prescribing a noise schedule on a 2D $M \times T$ grid $\mathcal{K} \in [K]^{M \times T}$; columns correspond to time step t and rows indexed by m determine noise-level. $\mathcal{K}_{m,t}$ represents the desired noise level of the time-step t token for row m. To generate a whole sequence of length T, initialize the tokens $\mathbf{x}_{1:T}$ to be white noise, corresponding to noise level k = K. We iterate down the grid row-by-row, denoising left-to-right across columns to the noise levels prescribed by \mathcal{K} . By the last row m = 0, the tokens are clean, i.e. their noise level is $\mathcal{K}_{0,t} \equiv 0$. Appendix D.5 discusses corner cases of this scheme; the hyperparameters $(\alpha_k, \bar{\alpha}_k, \sigma_k)$ are set to their standard values [30]. The matrix \mathcal{K} specifies how fast each token gets denoised at every step of sequence diffusion. Since Diffusion Forcing is trained to denoise tokens of all sequences of noise levels, \mathcal{K} can be designed to flexibly achieve different behaviors without re-training the model.

$$\mathcal{K}^{\text{pyramid}} = \begin{bmatrix} K & K & K & \dots & K \\ K-1 & K & K & \dots & K \\ K-2 & K-1 & K & \dots & K \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & 3 & \dots & H \\ 0 & 1 & 2 & \dots & H-1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

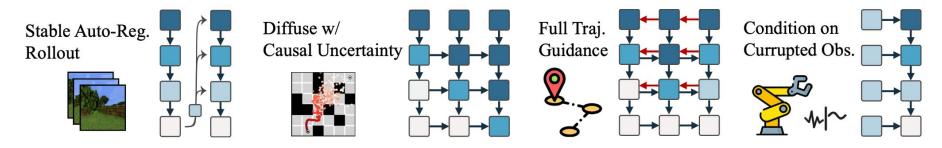
Properties of Diffusion Forcing

Standard diffusion: the same noise for all tokens.

Diffusion Forcing: each token t gets its own noise $k\square$, independent and variable. This enables partial denoising across time and uncertainty axes simultaneously.



Properties of Diffusion Forcing

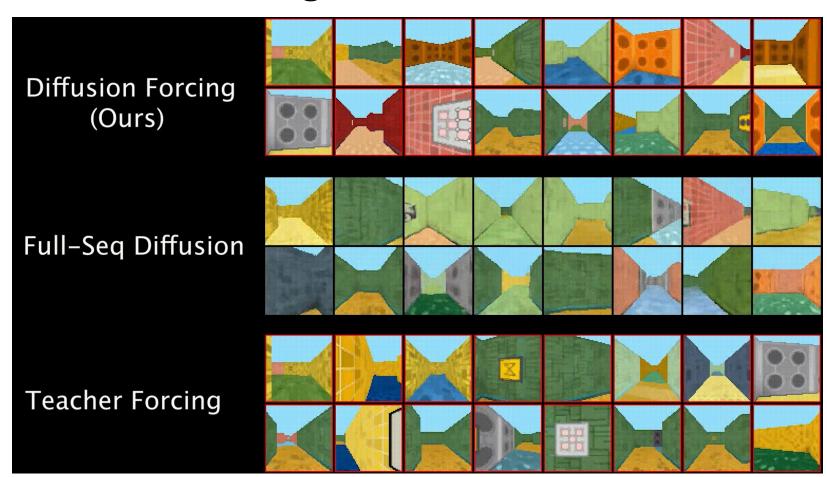


The capabilities offered by Diffusion Forcing motivate our novel framework for sequential decision making (SDM), with key applications to robotics and autonomous agents. Consider a Markov Decision Process defined by an environment with dynamics $p(\mathbf{s}_{t+1}|\mathbf{s}_t,\mathbf{a}_t)$, observation $p(\mathbf{o}_t|\mathbf{s}_t)$ and reward $p(\mathbf{r}_t|\mathbf{s}_t,\mathbf{a}_t)$. The goal is to train a policy $\pi(\mathbf{a}_t|\mathbf{o}_{1:t})$ such that the expected cumulative reward of a trajectory $\mathbb{E}[\sum_{t=1}^{T} \mathbf{r}_t]$ is maximized. We assign tokens $\mathbf{x}_t = [\mathbf{a}_t, \mathbf{r}_t, \mathbf{o}_{t+1}]$. A trajectory is a sequence $\mathbf{x}_{1:T}$, possibly of variable length; training is conducted as in Algorithm 1. At each step t of execution, past (noise-free) tokens $\mathbf{x}_{1:t-1}$ are summarized by a latent \mathbf{z}_{t-1} . Conditioned on this latent, we sample, via Algorithm 2, a plan $\hat{\mathbf{x}}_{t:t+H}$, with $\hat{\mathbf{x}}_t = [\hat{\mathbf{a}}_t, \hat{\mathbf{r}}_t, \hat{\mathbf{o}}_{t+1}]^{\top}$ containing predicted actions, rewards and observations. H is a look-ahead window, analogous to future predictions in model predictive control [20]. After taking planned action $\hat{\bf a}_t$, the environment produces a reward ${\bf r}_t$ and next observation \mathbf{o}_{t+1} , yielding next token $\mathbf{x}_t = [\hat{\mathbf{a}}_t, \mathbf{r}_t, \mathbf{o}_{t+1}]^{\top}$. The latent is updated according to the posterior $p_{\theta}(\mathbf{z}_t|\mathbf{z}_{t-1},\mathbf{x}_t,0)$. Our framework enables functionality as both policy and planner:

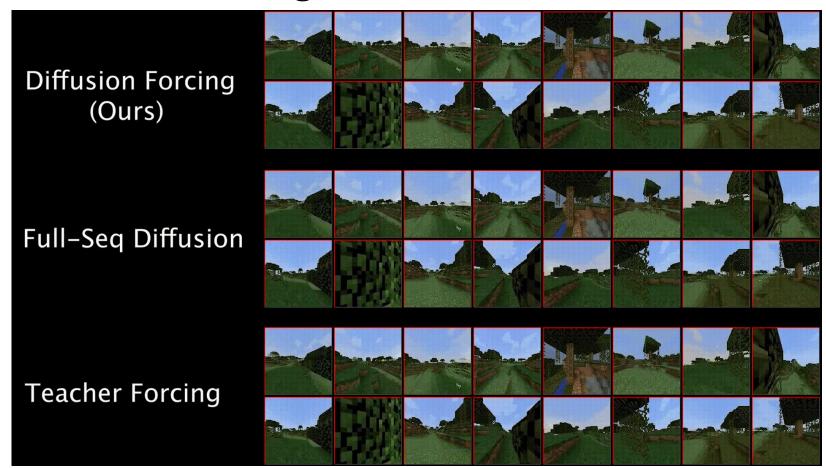
Video Generation

Video Generation

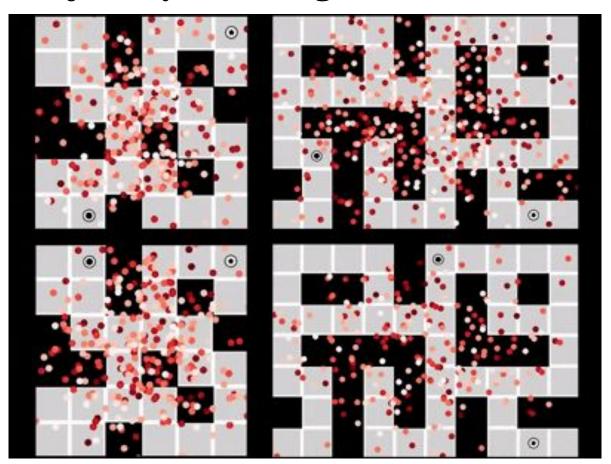
World Model Imagination



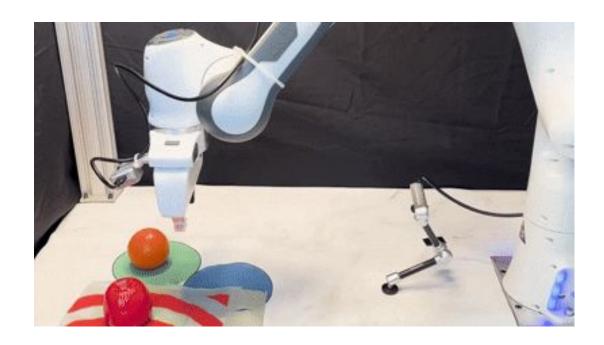
World Model Imagination



Trajectory Planning



Imitation Learning



Takeaway

Unified Framework for Causal Diffusion. Diffusion Forcing bridges the gap between *next-token prediction* and *full-sequence diffusion*.

- Each token has an **independent noise level**, enabling the model to denoise causally, *i.e.*, clean earlier tokens while keeping future ones uncertain.
- This allows DF to combine variable-length, causal generation (like autoregressive models) with guided, uncertainty-aware sampling (like diffusion models).

New Sampling Capabilities. DF introduces a **2D sampling grid** over diffusion steps (rows) and time steps (columns)

- Stable autoregressive rollouts beyond the training horizon by softly diffusing past tokens instead of treating them as perfect ground truth.
- Causal uncertainty encoding: near-future = low noise (certain), far-future = high noise (uncertain), yielding *long-horizon* guidance without breaking causality.

Robustness and Multi-Domain Generalization

- DF can handle noisy or missing observations, prompting the model to rely on its learned prior.
- Demonstrated success in **robotic imitation**, **planning**, and **time-series forecasting**, outperforming both next-token and full-sequence diffusion baselines.

Drawbacks – The "Double Long-Chain" Problem

While DF's per-token denoising schedule is flexible, its sampling process can become a double long-chain.

During sampling, DF performs two nested loops:

- 1. **Diffusion chain** (rows): iterative denoising over diffusion steps.
- 2. **Temporal chain** (columns): sequential causal rollout over time steps.

Hence, sampling runs over a *double chain* (diffusion x temporal).

Consequences

- Computation grows linearly in both time steps and denoising steps. For long-horizon video or planning tasks, this becomes
 prohibitively expensive.
- **Gradient feedback latency:** Because later tokens are denoised much later in the schedule, the **guidance gradient** must traverse two long chains (temporal + diffusion), which can delay convergence or cause vanishing guidance signals for early tokens.
- **Error accumulation:** As tokens are re-visited multiple times in the denoising schedule, slight prediction noise can re-amplify if the noise decay rate or schedule matrix is not well-calibrated, especially in high-dimensional continuous signals.
- Optimization complexity: The causal dependencies and non-uniform noise levels complicate gradient propagation, making DF harder to scale to high-resolution or transformer-based architectures (acknowledged explicitly in the paper's limitations)