Diffusion Forcing: Next-token Prediction
Meets Full-Sequence Diffusion

Boyuan Chen
MIT CSAIL
boyuanc@mit.edu

Max Simchowitz
MIT CSAIL
msimchow@mit.edu

Diego Marti Monso*

Technical University of Munich

diego.marti@tum.de

Russ Tedrake
MIT CSAIL
russt@mit.edu

NeurlPS 2024

Yilun Du
MIT CSAIL
yilundu@mit.edu

Vincent Sitzmann
MIT CSAIL
sitzmann@mit.edu

Sequence Models

Autoregressive (Next-Token) Sequence Models

Tt—1 Lt Lt+1
Rt—1 - 2t - Rt
Tt—2 Tt—1 Lt

Teacher Forcing — »{ unstable long rollouts

Full Sequence Diffusion Models

. JI CLIP ll

Zt

Spatial Attn.

ﬁl Conv Block J

Cameras

(ei0i)f

»
Spatial Attn
Temporal Attn I

@ : Fully Connected @ : Embedding v : VAE Encoder

Full-Sequence Diffusion — »{ non-causal

Temporal Attn.

> Zt—1

Diffusion Forcing = Teacher Forcing + Diffusion

Unifying time-axis masking (teacher forcing) and noise-axis masking (diffusion)

3.1 Noising as partial masking

Recall that masking is the practice of occluding a subset of data, such as patches of an image [27] or
timesteps in a sequence [15, 49], and training a model to recover unmasked portions. Without loss of
generality, we can view any collection of tokens, sequential or not, as an ordered set indexed by t.
Training next-token prediction with teacher forcing can then be interpreted as masking each token
x; at time ¢ and making predictions from the past x;.;_;. Restricted to sequences, we refer to all
these practices as masking along the time axis. We can also view full-sequence forward diffusion, i.e.,

gradually adding noise to the data x9.,. = x.7, as a form of partial masking, which we refer to as

masking along the noise axis. Indeed, after K steps of noising, X2, is (approximately) pure white

noise without information about the original data.

We establish a unified view along both axes of masking (see Fig. 2). We denote x1.7 for a sequence of

tokens, where the subscript indicates the time axis. As above, xf ¢t denotes x; at noise level k; under
the forward diffusion process (2.1); x9 = x is the unnoised token, and x* is white noise N(0, I).

Thus, (x*);<;<7 denotes a sequence of noisy observations where each token has a different noise
level k;, which can be seen as the degree of partial masking applied to each token through noising.

Diffusion Forcing = Teacher Forcing + Diffusion

Unifying time-axis masking (teacher forcing) and noise-axis masking (diffusion)

3.2 Diffusion Forcing: different noise levels for different tokens

Diffusion Forcing (DF) is a framework for training and sampling arbitrary sequence lengths of noisy
tokens (xéC *)1<t<T, Where critically, the noise level k; of each token can vary by time step. In this
paper, we focus on time series data, and thus instantiate Diffusion Forcing with causal architectures

(where xft depends only on past noisy tokens), which we call Causal Diffusion Forcing (CDF). For
simplicity, we focus on a minimal implementation with a vanilla Recurrent Neural Network (RNN)
[11]. Potential transformer implementation of Diffusion Forcing is also possible but we defer its
discussion to Appendix B.1.

The RNN with weights 6 maintains latents z, capturing the influence of past tokens, and these evolve
via dynamics z; ~ pg(z¢|Zi—1, xft, k¢) with a recurrent layer. When an incoming noisy observation
xft is made, the hidden state is updated in a Markovian fashion z; ~ pg(z;|z;_1, xkt, kt)z. When
k. = 0, this is the posterior update in Bayes filtering; whereas when k; = K (and x;" is pure noise
and thus uninformative), this is equivalent to modeling the “prior distribution” py(z; | z;—1) in Bayes
filtering. Given latent z;, an observation model pg(x?|z;) predicts x;.

Diffusion Forcing = Teacher Forcing + Diffusion

Unifying time-axis masking (teacher forcing) and noise-axis masking (diffusion)

Noise as Masking

Diffusion Forcing Teacher Forcing Full-Seq. Diffusion
o 000
Tining [1+{ 1188
4
oo0®
Time
[] Observation
() Latent State Sampling

— Generation
W~ Add Noise

Figure 2: Method Overview. Diffusion Forcing trains causal sequence neural networks (such as
an RNN or a masked transformer) to denoise flexible-length sequences where each frame of the
sequence can have a different noise level. In contrast, next-token prediction models, common in
language modeling, are trained to predict a single next token from a ground-truth sequence (teacher
forcing [65]), and full-sequence diffusion, common in video generation, train non-causal architectures
to denoise all frames in a sequence at once with the same noise level. Diffusion Forcing thus
interleaves the time axis of the sequence and the noise axis of diffusion, unifying strengths of both
alternatives and enabling completely new capabilities (see Secs. 3.2,3.4).

Training and Sampling

Algorithm 1 Diffusion Forcing Training

Algorithm 2 DF Sampling with Guidance

loop

Sample tajectory of observations (x1, ..., XT).

l:

2;

3: fort=1,...,Tdo

4: Sample independent noise level k;

{0,1,..,K}

xFt = ForwardDiffuse(x, k¢)
xkt— ap, X

Define ¢ = &MVt

Update z; ~ po(z¢|ze_1, %%, ke).
Set ét = 69(Zt_1, Xft, kt)
end for
10: L =MSELoss([€1, ..., €n], [€1, ---) €n])
11: Backprop with L and update 6
12: end loop

PR B 2

1:

10:
11:
12:

ol A O g o

Input: Model 0, scheduling matrix /C, initial latent

Zo, guidance cost c(-).

Initialize x;,...,x7 ~ N(0,0%1).

forrowm =M —1,...,0do
fort=1,...,Tdo

new

Zy Npe(zt | Zt—l,Xt,/Cm+1,t).
k + ICm,t, W ~v N(O, I)

new 1 1—oyg new
Xy o m(xt_m@(zt , Xt, k)) +
OrW
Update z; < z;°".
end for

x1:# AddGuidance(x7%, Vx log c(x1:5))
end for
Return x;.7.

Key Ingredient — 2D Noise Schedule Grid

Sampling. Diffusion Forcing sampling is depicted in Algorithm 2 and is defined by prescribing a
noise schedule on a 2D M x T grid K € [K]|M*T; columns correspond to time step ¢ and rows
indexed by m determine noise-level. K, ; represents the desired noise level of the time-step ¢
token for row m. To generate a whole sequence of length 7', initialize the tokens x;.7 to be white
noise, corresponding to noise level £ = K. We iterate down the grid row-by-row, denoising left-
to-right across columns to the noise levels prescribed by K. By the last row m = 0, the tokens are
clean, i.e. their noise level is Ko+ = 0. Appendix D.5 discusses corner cases of this scheme; the
hyperparameters (o, @, 0y) are set to their standard values [30]. The matrix X specifies how fast
each token gets denoised at every step of sequence diffusion. Since Diffusion Forcing is trained
to denoise tokens of all sequences of noise levels, K can be designed to flexibly achieve different
behaviors without re-training the model.

F K K K K 7
K-1 K K K
K-2 K-1 K K
’prramid: 1 2 3 H
0 1 2 H-1
0 0 0 1
| 0 0 0 0

Properties of Diffusion Forcing

Standard diffusion: the same noise for all tokens.
Diffusion Forcing: each token t gets its own noise k£[1, independent and variable. This enables partial

denoising across time and uncertainty axes simultaneously.

Guidance Tree Search Compositionality Causal Uncertainty Flexible Horizon

g
RN 8O
3 <
V.log p(y|z) S
Teacher Forcing 0 O O O
Full-Seq. Diffusion 0 0 0 0
Diffusion Forcing Q O Q O

Properties of Diffusion Forcing

Diffuse w/ Full Traj. Condition on
Causal Uncertainty Guldance Currupted Obs.
\ 5 € — ‘
),
: W~

The capabilities offered by Diffusion Forcing motivate our novel framework for sequential decision
making (SDM), with key applications to robotics and autonomous agents. Consider a Markov
Decision Process defined by an environment with dynamics p(s;1|s¢, a;), observation p(o;|s;) and
reward p(r¢|s¢,a;). The goal is to train a policy 7 (a;|01.¢) such that the expected cumulative reward

of a trajectory E[Zle r;] is maximized. We assign tokens x; = [a;,r¢,0.441]. A trajectory is a
sequence X1.7, possibly of variable length; training is conducted as in Algorithm 1. At each step ¢
of execution, past (noise-free) tokens x;.;—; are summarized by a latent z;_;. Conditioned on this
latent, we sample, via Algorithm 2, a plan X;.;4 pr, with X; = [ay, ¢, 6t+1]T containing predicted
actions, rewards and observations. H is a look-ahead window, analogous to future predictions in
model predictive control [20]. After taking planned action a;, the environment produces a reward r;
and next observation oy 1, yielding next token x; = [a;, ry, ot+1] . The latent is updated according
to the posterior pg(z¢|z:—1,X¢,0). Our framework enables functlonality as both policy and planner:

Stable Auto-Reg.
Rollout

T~

Video Generation

Video Generation

World Model Imagination

Diffusion Forcing

Full-Seq Diffusion

Teacher Forcing

World Model Imagination

Diffusion Forcing ; ,

Full-Seq Diffusion ; |

Teacher Forcing

w W V— ; '." W

Trajectory Planning

Imitation Learning

Takeaway

Unified Framework for Causal Diffusion. Diffusion Forcing bridges the gap between next-token prediction and
full-sequence diffusion.

e Each token has an independent noise level, enabling the model to denoise causally, i.e., clean earlier tokens while keeping

future ones uncertain.
e This allows DF to combine variable-length, causal generation (like autoregressive models) with guided, uncertainty-aware

sampling (like diffusion models).
New Sampling Capabilities. DF introduces a 2D sampling grid over diffusion steps (rows) and time steps (columns)

e Stable autoregressive rollouts beyond the training horizon by softly diffusing past tokens instead of treating them as perfect
ground truth.
e Causal uncertainty encoding: near-future = low noise (certain), far-future = high noise (uncertain), yielding long-horizon

guidance without breaking causality.

Robustness and Multi-Domain Generalization

e DF can handle noisy or missing observations, prompting the model to rely on its learned prior.
e Demonstrated success in robotic imitation, planning, and time-series forecasting, outperforming both next-token and
full-sequence diffusion baselines.

Drawbacks — The “Double Long-Chain” Problem

While DF’s per-token denoising schedule is flexible, its sampling process can become a double long-chain.
During sampling, DF performs two nested loops:

1. Diffusion chain (rows): iterative denoising over diffusion steps.
2. Temporal chain (columns): sequential causal rollout over time steps.

Hence, sampling runs over a double chain (diffusion x temporal).

Consequences

e Computation grows linearly in both time steps and denoising steps. For long-horizon video or planning tasks, this becomes
prohibitively expensive.

e Gradient feedback latency: Because later tokens are denoised much later in the schedule, the guidance gradient must traverse
two long chains (temporal + diffusion), which can delay convergence or cause vanishing guidance signals for early tokens.

e Error accumulation: As tokens are re-visited multiple times in the denoising schedule, slight prediction noise can re-amplify if the
noise decay rate or schedule matrix is not well-calibrated, especially in high-dimensional continuous signals.

e Optimization complexity: The causal dependencies and non-uniform noise levels complicate gradient propagation, making DF
harder to scale to high-resolution or transformer-based architectures (acknowledged explicitly in the paper’s limitations)

