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Sequence Models 
Autoregressive (Next-Token) Sequence Models Full Sequence Diffusion Models

Teacher Forcing → ❌ unstable long rollouts Full-Sequence Diffusion → ❌ non-causal
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Training and Sampling



Key Ingredient – 2D Noise Schedule Grid 



Properties of Diffusion Forcing 
Standard diffusion: the same noise for all tokens. 
Diffusion Forcing: each token t gets its own noise kₜ, independent and variable. This enables partial 
denoising across time and uncertainty axes simultaneously.
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Video Generation
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World Model Imagination



World Model Imagination



Trajectory Planning



Imitation Learning



Takeaway 
Unified Framework for Causal Diffusion. Diffusion Forcing bridges the gap between next-token prediction and 
full-sequence diffusion.

● Each token has an independent noise level , enabling the model to denoise causally, i.e., clean earlier tokens while keeping 
future ones uncertain.

● This allows DF to combine variable-length, causal generation (like autoregressive models) with guided, uncertainty-aware 
sampling (like diffusion models).

New Sampling Capabilities. DF introduces a 2D sampling grid over diffusion steps (rows) and time steps (columns)

● Stable autoregressive rollouts beyond the training horizon by softly diffusing past tokens instead of treating them as perfect 
ground truth.

● Causal uncertainty encoding: near-future = low noise (certain), far-future = high noise (uncertain), yielding long-horizon 
guidance without breaking causality.

Robustness and Multi-Domain Generalization

● DF can handle noisy or missing observations, prompting the model to rely on its learned prior.
● Demonstrated success in robotic imitation, planning, and time-series forecasting, outperforming both next-token and 

full-sequence diffusion baselines.



Drawbacks – The “Double Long-Chain” Problem 

While DF’s per-token denoising schedule is flexible, its sampling process can become a double long-chain.

During sampling, DF performs two nested loops:

1. Diffusion chain (rows): iterative denoising over diffusion steps.
2. Temporal chain (columns): sequential causal rollout over time steps.

Hence, sampling runs over a double chain (diffusion x temporal).

Consequences

● Computation grows linearly in both time steps and denoising steps. For long-horizon video or planning tasks, this becomes 
prohibitively expensive.

● Gradient feedback latency: Because later tokens are denoised much later in the schedule, the guidance gradient must traverse 
two long chains (temporal + diffusion), which can delay convergence or cause vanishing guidance signals for early tokens.

● Error accumulation: As tokens are re-visited multiple times in the denoising schedule, slight prediction noise can re-amplify if the 
noise decay rate or schedule matrix is not well-calibrated, especially in high-dimensional continuous signals.

● Optimization complexity: The causal dependencies and non-uniform noise levels complicate gradient propagation, making DF 
harder to scale to high-resolution or transformer-based architectures (acknowledged explicitly in the paper’s limitations)


