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Splat4D: Diffusion-Enhanced 4D Gaussian Splatting for Temporally and Spatially
Consistent Content Creation
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Splat4D - a novel framework enabling high-fidelity
4D content generation from a monocular video.

HOW TO ENSURE VISUAL QUALITY?

Text Guidance:
“The rocket

« Introduce enhancer to boost visual fidelity and fine-grained details: launching

Enhancer

Text Guidance:

Input Text: ‘Robot WALL-E
* How to ensure temporal and spatial consistency after enhancement? “Moving robot on fire”
WALL-E” ’

+ = Leverage a video diffusion model for 4D consistency refinement. y

Our method demonstrates strong generalization capabilities, enabling the generation of temporally stable and high-fidelity
4D content from monocular videos, images, and text prompts.
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Fig. 2. Overview of Splat4D. Our method for 4D content generation begins with processing input data (text, image, or monocular video) to produce
high-quality multi-view image sequences. These sequences are used to initialize a 4D Gaussian representation via an asymmetry U-Net and image splattering.
Refinement steps include leveraging uncertainty masking and video denoising diffusion to ensure high fidelity and spatial-temporal consistency, culminating
in versatile 4D content creation. The pipeline supports optional text-guided content editing, enabling dynamic modifications of the 4D output for enhanced
flexibility and creative control.



Pipeline - Coarse 4D Gaussian Generation

Utilize the video diffusion model to generate the image
sequence.

Use MV-Adapter to generate additional views.

Apply image enhancer to improve quality and details.
Utilize an asymmetric U-Net and Splatter Image head to
transform multi-view image sequence into a Gaussian
sequence

3.21 Multi-view Video Generation. We utilize the video diffusion
model [Blattmann et al. 2023a] to generate the image sequence.
However, relying solely on a single-view video does not provide
enough information for robust 4D modeling. This limitation stems
from issues like depth ambiguity and the lack of side and back view
information. To address this, we enhance the single-view video by
using MV-Adapter [Huang et al. 2024] to generate additional views,
including the front, back, and sides, thereby enriching the model
with more comprehensive rotational perspectives:

MV-Adapter(I;) — {I, Lt ['8" fbacky @)

See Supplementary Material for evaluation for the choice of MV-
Adapter over SV4D.

3.2.2  Multi-view Image Enhancer. Although MV-Adapter can ro-
bustly provide multi-view perspectives, their generated videos often
lack fine-grained details and the high resolution required for realis-
tic 4D content (see the figure in the supplementary material). This
issue is expected as the input samples would always fall outside the
training distribution of MV-Adapter. To address this, we propose
to apply an image enhancer model [Wang et al. 2018] IE to refine
textures, edges, and details for each frame and each view.

Original Enhanced Enhanced

Original

Fig. 7. Effect of Image Enhancer. We show the difference between hu-
man images before and after enhancement with the image enhancer. The
enhanced images contain more fine details.
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3.2.3 4D Gaussian Reconstruction. After generating a high-quality,
multi-view image sequence, we proceed to construct a 4D Gaussian
field. Following LGM [Tang et al. 2024a], we first input the multi-
view image sequence into U-Net to/encode key spatial and depth
features across the views. The U-Net architecture is well-suited for
this task because it can capture detailed structures at multiple reso-
lutions through its encoder-decoder structure. The encoder captures
feature maps at different scales, identifying essential textures and
depth cues, while the decoder reconstructs these features into a
cohesive representation.

Once the U-Net has processed the multi-view sequence, we apply
the Splatter Image [Szymanowicz et al. 2024] method to project these
learned features into a continuous 4D Gaussian field. Specifically,
Splatter Image maps each pixel from the feature maps into a series
of localized Gaussian distributions in 3D space, with each Gaussian
representing a small spatial region from the scene. To form the final
temporally consistent Gaussian sequences, we design our network to
separately reconstruct a 3D Gaussian field for each frame (time step).
Specifically, we construct a stacked representation of multiple 3D
Gaussians, represented as G(S,t) = [X}, sg. ¢, 0. (¢, with position,
scale, rotation, opacity and Spherical Harmonics (SH) at time ¢.
This Gaussian field serves as a foundational structure, providing a
spatially continuous and temporally stable representation that can
be rendered from any angle.

Gaussian
features

Time



Pipeline - Spatial-Temporal Consistency Refinement

* Maskinconsistent areas by uncertainty prediction.

* Inpaint masked areas by video diffusion model.
 Optimize gaussian sequence by denoised video.

Although multi-view video generation and image enhancement
techniques can provide detailed 3D information necessary for con-
structing a 4D Gaussian scene, the resulting reconstruction still
suffers from issues with temporal and spatial consistency. This hap-
pens because the MV-Adapter has difficulty maintaining consistent
multi-view images. Additionally, since the MV-Adapter processes
each frame independently, it further contributes to these inconsisten-
cies in the model. To tackle this problem, we introduce a multi-step
approach that involves two key techniques: inconsistency masking
and uncertainty-guided refinement.

3.3.1 Inconsistency Masking. We start by rendering a sequence of

multi-view images {L,ItIEft,Lnght, ItbaCk|t € [1,T]} from the 4D
Gaussian field G(S,t), where I represents the rendered images.
For each time step ¢, we then generate uncertainty maps [Kulhanek
et al. 2024] to detect regions with inconsistencies. We extract DI-
NOv2 [Oquab et al. 2024] features from the rendered images and
predict the pixel-wise uncertainty ¢ using an uncertainty prediction
network [Kulhanek et al. 2024]. These uncertainty maps highlight
areas that show significant variation or deviation between frames,
which are often caused by issues like motion artifacts, occlusions,
or perspective differences. By identifying these inconsistent areas,
we create a mask that helps us focus on correcting the problematic
regions while keeping the stable areas intact. The uncertainty mask

is defined as M = 1 ( ﬁ > 1), where 1 is the indicator function.

DINOv2 + Pixel-wise uncertainty prediction network

imetric

3.3.2  Uncertainty-guided Refinement. Inspired by [Yu et al. 2024],
we address the inconsistencies highlighted by the uncertainty map
by applying a video denoising diffusion model [Xing et al. 2024]
to the rendered sequence. This model leverages the masked areas

identified earlier and restores the temporal and spatial consistency
by “filling in” these regions with content that aligns seamlessly with
the surrounding pixels. The diffusion model operates iteratively,
refining each frame while considering the neighboring frames to
ensure smooth transitions and maintain consistent visual quality.
This step is crucial for preserving the flow of the sequence, reducing
issues like jitter or flicker that can disrupt the viewer’s experience.
Once the sequence is refined and consistent, the updated frames are
used to improve the 4D Gaussian field. This creates a feedback loop,
aligning the 4D representation with the enhanced image sequence,
which boosts the overall quality and stability of the 4D scene. Note
that we condition the video diffusion model on the first and last
frames of the input sequence to address the hallucination problem.
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Pipeline - Generalizable 3D Gaussian Field Predictor Learning

Aside from the Inconsistency issues weve already 1mpr0ved, we also Table 4. Ablation Study. The experiments are conducted on Consistent4D

find that the quality of the 4D Gaussian fields doesn’t always match dataset [Jiang et al. 2023].

the improvements made by the image enhancer. This is expected as

there i.s a notable domain gap between the pre—trail.led.distr.ibution Model LPIPS| CLIP-S] FVD-F| FVD-V]
of the image enhancer model [Wang et al. 2018], which is trained on

DIV2K dataset [Agustsson and Timofte 2017], and LGM [Tang et al. w/o mask  0.114 0.93 507.15  413.79
2024a], which is trained on Objaverse [Deitke et al. 2023]. To address w/o train  0.107 0.96 44533 306481

this issue, we propose to fine-tune the U-Net model derived from Ours 0.0%0 0.98 390.85  282.79

LGM with the pre-processed Objaverse dataset. Specifically, we first
follow LGM [Tang et al. 2024a] to filter low-quality 3D models. In
each training step, we randomly choose an input image with an ele-
vation angle between -30 and 30 degrees. The MV-Adapter [Huang
et al. 2024] is then used to generate four orthogonal views, including
the original image. These views are processed through the image

Table 5. Additional Ablation Study. The first row illustrates the results
without image enhancer. The second row shows the results using SV4D over
MV-Adapter for multi-view generation.

enhancer and consistency refinement steps, and are subsequently Model LPIPS] CLIP-ST FVD-F| FVD-V{
passed into the U-Net model to produce the 4D Gaussian field. Fi- w/o loop 0.120 0.90 831.84 47391
nally, we render images from the Gaussian field based on the angles w/o enhancer ~ 0.108 0.96 463.39  384.26
of the four orthogonal views for supervision. This training process SV4D® 0.105 0.94 441.72 356.25
allows the fine-tuned U-Net to reduce the domain gap between w/o cond 0.101 0.94 425.72 - 339.05
Ours 0.090 0.98 390.85  282.79

the pre-trained U-Net from LGM and the image enhancer model,
resulting in improved quality of the 4D Gaussian fields.



Implementation Details

For the evaluation of video-to-4D generation, we utilize the video
dataset provided by Consistent4D [Jiang et al. 2023]. We employ the
Segment Anything Model (SAM) [Kirillov et al. 2023] to preprocess
the input image sequences to extract the foreground objects. To
evaluate image-to-4D generation, we curate a dataset by collecting
images from the internet. These images are converted to RGBA
format and resized to a resolution of 512x512 to ensure compatibility
with our pipeline. For fine-tuning, we utilize the 80K 3D object
subset[Tang et al. 2024a] of the Objaverse dataset [Deitke et al. 2023]
after filtering out low-quality models. Each 3D model is rendered

into RGB images from 100 camera views at a resolution of 512 X 512.

The training process is being conducted using the asymmetric
U-Net model on 4 NVIDIA V100 GPUs, with each GPU processing
a batch size of 4 under bfloat16 precision. For each batch, a single
camera view is being randomly sampled, while 4 orthogonal views
are being generated using the MV-adapter [Huang et al. 2024] based
on the input view. The asymmetric U-Net model is generating the
3D Gaussian field, which is then being rendered into images for the
orthogonal views. Original Objaverse 3D object rendered images are
being used as supervision signals. The rendered 3D Gaussians are
being compared to the original at a resolution of 512x512 using the
mean squared error (MSE) loss. To optimize memory usage, images
are being resized to 256x256 for LPIPS loss calculation. The AdamW
optimizer is being employed with a learning rate of 4 x 107%, a
weight decay of 0.05, and momentum parameters of 0.9. The learning
rate is following a cosine annealing schedule to gradually decay to
zero during training. Gradients are being clipped to a maximum
norm of 1.0 to enhance stability. Additionally, grid distortion and
camera jitter are being applied with a probability of 50% to improve
generalization.



Comparison

Table 1. Video-to-4D quantitative Comparison on Consistent4dD
Dataset [Jiang et al. 2023].

Video frame

----------------------- > Model LPIPS| CLIP-S] FVD-F| FVD-V]
, Consistent4D ~ 0.134 087 113393 73579
STAG4D 0126 091 99221  685.23
SV4D 0118 092 73240  503.51
aDiffusion 0.13 0.94 4892 4055
Ours 0.090 0.97 390.85 282.79

— FVD-F — FVD-V
Table 2. Video-to-4D Quantitative Comparison on ObjaverseDy Test
Set [Deitke et al. 2023; Xie et al. 2024].

I R

-] Model LPIPS| CLIP-ST FVD-F| FVD-V]

| ConsistentdD  0.165  0.896  880.54  488.38

STAG4D 0.158  0.860  929.10  453.62

vl —>FVD-Diag — FV4D SV4D 0.131 0905  659.66  368.53
Ours 0.112 0.939  383.71 267.94

Figure 7: Illustrations of video and 4D met-
rics. FVD-F evaluates coherence between video Table 3. Quantitative Comparison on Image-to-4D Generation.
frames from a fixed view. FVD-V captures multi-

view consistency. We also design FVD-Diag and Model LPIPS| CLIP-ST PSNR| FVD]
FV4D to evaluate 4D consistency by traversing 4DGen 0.28 0.84 144 736.6
the image matrix through different paths. STAG4D 0.24 0.86 152 6754

DiffusiondD ~ 0.18 089 168  490.2

Ours 0.12 0.94 19.2 395.0
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Fig. 3. Comparison on video-to-4D generation. The rendered image of the input view from the 4D object is on the left column, and the rendered images of
the novel view are illustrated on the two right columns.



Application - Text/Image Conditioned 4D Generation.
+ text-to-image diffusion model

4.4.1 Text/Image Conditioned 4D Generation. To demonstrate our simply begins with an input image, bypassing the text-to-image

method’s capability for text-to-4D and image-to-4D generation, we step. From the resulting videos, we use a multi-view diffusion model + stable video diffusion model
show our generation results in Fig. 4. For text-to-4D generation, we to generate four orthogonal view sequences, which are then fed

first employ a text-to-image diffusion model to convert the input into our reconstruction pineline to construct a 4D Gaussian field.

textual prompt into a high-quality image and then combine that
image with the original text in a stable video diffusion model to pro-
duce a coherent short video. In image-to-4D generation, the pipeline

Input Image Generated 4D Object Input Image Generated 4D Object
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Fig. 4. 4D Content Creation with Text/Image as Input. The first two rows are results with image inputs, and bottom two rows are results with text inputs.



Application - 4D Human Generation. + human pose extraction model
+ 2D human motion transfer model

4.4.2 4D Human Generation. Given a source video with the desired
motion to be transferred and an image of the human subject to be
animated, we first use a pose extraction model [Kocabas et al. 2020]
to detect key body landmarks, skeletal poses, and motion trajectories.
Next, we apply Champ [Zhu et al. 2024], a 2D motion transfer
model, to animate the input image, making it move according to
the extracted motion. Our method then uses the resulting animated
image sequence {I;|t € [1,T]}, where T is the total number of
frames, to generate the corresponding 4D Gaussian scenes. Fig. 5

Input Image

showcases the results of our 4D human generation pipeline, which
combines a single input image with a motion sequence to produce
high-fidelity, dynamic human representations. First, the input image
and motion sequence are processed through a 2D motion transfer
model to create a video of the subject performing the specified
action (see details in Supplementary Material). Next, we follow our
pipeline and apply a multi-view diffusion model and construct 4D
Gaussians of the human.

Fig. 5 illustrates the effectiveness of our approach. These results
highlight our ability to preserve intricate human details, including
complex structures like facial details and loose clothing, across

varying views and motions. Fig. 5. 4D Human Generation with an Input Image as Guidance. The

first row shows the input image, while the subsequent rows depict rendered
novel views under various poses.



Application - Text-guided Editing

4.4.3 Text-guided Editing. For this application, we use the Instruct-
Pix2Pix [Brooks et al. 2023] network to modify the output video

generated by the video diffusion model, guided by a text prompt (see
Fig. 2). For instance, starting with a video of a house, the pix2pix
network is applied to transform the video based on a prompt like
“house on fire”. Specifically, the pix2pix network performs image-
to-image translation, adjusting each frame of the video to match
the specified scene changes. Once the transformation is complete,
the modified video sequence is used to refine the corresponding 4D
Gaussian sequence, resulting in a final 4D content that accurately re-
flects the updated dynamics of the “house on fire” scenario. In Fig. 6,
we showcase our method’s text-guided 4D editing capability that
transforms 4D Gaussian representations based on user-specified
textual or visual prompts. Starting from our 4D Gaussian field, we
employ a pix2pix network to edit the rendered video according
to the guidance text, producing an updated video sequence. This
sequence is further optimized using the 4D Gaussian representation,
ensuring coherence and alignment with the guidance.

+ text-to-image diffusion model
+ Instruct-Pix2Pix (text guided image-to-image translation)

Text guidance: “ The spaceship injecting fuel”

Input Image:

Input text:
“Moving robot

WALL-E” .

' ' )
Input text: w ; v “'
S

“Dancing Pikachu” ; / ~) ® ' \» X

Fig. 6. 4D Content Editing with Text Guidance. The first column show-
cases the original input (text or image), while the subsequent three columns
present the edited outputs. Each edited 4D object is displayed beneath the
corresponding text.



Spline Deformation Field
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Fig. 1. We represent trajectories with splines, in which analytically derived velocity v enables effective spatial coherency preservation through our novel loss
term L,. Furthermore, we propose a metric concepting on Moran’s / to quantify it. Spline interpolation can generate fair interpolated and extended motions,
compared to purely relying on the smoothness inductive bias of the implicit deformation field, such as ResFields [Mihajlovic et al. 2024].
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Fig. 2. The pipeline of our method. We explain how to query value at arbitrary timestamps through polynomial interpolation in Sec. 2.1, corresponding to the
timelines in the left part and orange block. We describe our design of spatiotemporal conditioning in Sec. 2.2, which corresponds to the red (temporal signal)
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what is cubic hermite spline
Pipeline - Spline Interpolation !

' ' 0.8 A cubic Hermite spline is a type of piecewise polynomial curve used in interpolation and computer graphics.

It is defined by cubic polynomials on each interval, with constraints on both function values and derivatives

A trajectory from ¢ = 0 to t = 1 is uniformly divided into N — 1 time 0 oo .
pes) at the endpoints of each segment.
intervals, resulting in N knots. Unlike global fitting methods that 04
utilize a single polynomial, Fourier series, or their combination [Lin 02 .
Key Properties
et al. 2024], the localized nature of splines minimizes potential tem- 0 1. Piecewise Cubic
poral oscillations, particularly in static regions. To prevent under- ozl * Each segment between two points is described by a cubic polynomial
2. Hermite Conditions
ﬁttlng: the ChOICE Of N must corre Spond to the number Of 1nput The four ngmite baSiS_ functior?s. T_he & For each pair of endpoints py, p1, the spline also uses the derivatives (tangents) mg, m1.
. . . interpolant in each subinterval is a linear . . . i
te mporal StepS, ensurlng a Well'dete I‘mlned System. Spe(—lﬁcally, for B This ensures not only the curve passes through the given points, but also has the specified slope at
.. . . those points.
T training timestamps, the number of parameters introduced by N 3. Interpolation Basis
knots must Satisfy the follOW]_ng equation: A cubic Hermite spline can be expressed as:
H(t) = hoo(t)po + hao(t)mo + ho1(t)p1 + har(t)ma, t € [0,1]
K-N=T, (1)
where h;;(t) are cubic Hermite basis functions:
where K is a factor determined by the order of the polynomial. Here, * hoo(t) = 26° = 3% 41
c c c s . . o hy(t) =% —2t2 + ¢
we focus on the Cubic Hermite Spline [Wikipedia 2024], which o hnlt) = 26 + 367
represents a trajectory using consecutive third-order polynomial ¢ hu(t) =t -
t F . t t ¢ d N k t 4. Smoothness
Segmen S. or a glven query 1mes amp que""y an no S’ we * By construction, it ensures Ct continuity (continuous first derivative).
ﬁrst locate the time interval to Which it belongs and identify the e [f tangent vectors are chosen consistently, the resulting spline is smooth.

corresponding starting and ending knots, denoted as fsqr; and To preserve spatial coherency, we employ a Canonical-Deformation

tend: respectively. The interval is then normalized to a relative time design, where the parameters p and m of points are predicted by
t € [0,1]. The interpolation function for each segment is defined as: a Coord.-NN using spatial coordinates in the canonical space as

p(F) = (253 _ 372 4 D)po + (f3 _ 972 4 F)ymo+ inputs. This process can be expressed as:

_ _ _ - 2
(=283 +3t2)py + (B3 — t2)my, @ X¢ = {x,x§ € R}, N,,»

x;i(t =F(t,x;(t , % (t X (t % (t ,
where pg and p; represent the properties at the starting and ending AI}E _f:iryz) #:( t( , :() s_mq';;)(xé (tsfarj)) #{Fend). %i(tend)) 3)
t\tstart /s Ap\tstar - i sstart/»

knots, while my and m; are the corresponding starting and ending X (tstart) = XS + AX; (tstart),

fAIgeS; We treat the tangents as 1nde1?endent optlmlzable pararpe- where x;? denotes the spatial coordinates of points in the canonical
ters. We follow Eq. 1 and set K = 2, which corresponds to choosing space, N, is the total number of points, and F (- - ) represents the

N =T/2, thereby guaranteeing a theoretically well-determined fit. interpolation function described in Eq. 2. To enhance clarity, we
substitute po with x;(tsrqr¢) and mo with x;(tszqr¢). For brevity, we
omit the derivation of ¢,,, here and include it in the supp. material.



Pipeline - Time-variant Spatial Encoding (TVSE)
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Fig. 3. Anintuitive diagram of our TVSE. Rounded boxes with different edge
colors mark and MLP and methods. A" (¢)[-] and P (¢)[-, -]
denote sampling values at specific position from an axis and plane, respec-
tively. Following [Fridovich-Keil et al. 2023], we aggregate features sampled
from the three axes and planes using element-wise multiplication ©.

Rrank

Fig. 11. Visualization of v € in Eq. 4. We concatenate the temporal
weights of SF-Triplanes along the temporal dimension, i.e., each column in
the heat map is a vector representing a deformed state. Not surprisingly,
scene lego can be reconstructed with rank = 1.

Previous works [Fridovich-Keil et al. 2023; Huang et al. 2023; Pumarola
et al. 2021; Wu et al. 2023; Xu et al. 2024; Yang et al. 2023] treat four-
dimensional inputs (three spatial coordinates and one timestamp)
equally. Recently, ResFields [Mihajlovic et al. 2024] introduced a
novel approach by injecting temporal information into the weights
of pure MLP-based spatial encodings through time-variant residual
and base weights, enhancing the performance of various previous
methods. Its architecture-agnostic design naturally extends to other
encoding schemes. The key conceptual difference can expressed as:

Previous work: ®g(y(x), y(y), y(2), y (1)), (4)
Ours: Pg(yp (1) (%) Yo (1) (¥): Vo(r) (2));

where y(-) represents the encoding (e.g., Sinusoidal [Mildenhall
et al. 2021] or grids [Cao and Johnson 2023; Miiller et al. 2022]),
Yo(¢)(+) denotes time-variant encoding, and ¢(#) is the temporal
signal injection function, which varies based on the specific design

of y(-).

Building on the concept of ResFields [Mihajlovic et al. 2024],
we incorporate low-rank decomposition in the temporal domain to
achieve both compactness and implicit regularization. This approach
can be expressed as:

rank

$(t) = bpgge + Z velr] - Breslrl, (5)
r=1

where [r] denotes element indexing, v; € R"%" represents train-
able weights associated with each timestep, Byes € R4 %" are
the residual bases, and by, corresponds to the time-invariant en-
coding. These notations carry different meanings depending on
the chosen encoding scheme. In this work, we primarily focus on
cosine functions and multi-resolution dense grids. Fig. 3 provides
an intuitive visualization of the design of y, ;). We refer to the
supplementary material for detailed implementations.



Pipeline - Velocity and Acceleration Regularization

. e % ; Grid4D SF-PE-ResFields SF-PE-ResFields§
By taking derivative w.r.t time in Eq. 2, the velocity of a point on ' Xu ct L2 e LTS N

the spline can be determined by the following function: | 3\ ’ ‘ ‘ ' A \ ‘)‘

o(F) = (672 = 6F)po + (3F% — 4F + 1)mo+

(=672 + 67)py + (3F% — 2F)my, ()

where u(%) has physical meaning, i.e., velocity. With the above
closed-form velocity function, the velocity loss can be formulated
as:
L= > will - vjll}, (7)
JENK (i)
where i is the index of points, N (i) represents the k nearest neigh-
bors of i, and j is the local index in neighborhood, w;; is weight
calculated from relative distance.
We propose one additional constraint to reduce high-frequency
jitter and alleviate low-frequency oscillation. Specifically, taking
derivation w.r.t time in Eq. 6, we can get the analytical acceleration:

a(f) = (12 — 6)po + (6 —4)mo + (=12 + 6)py + (6 — 2)my. (8)

Then, we regularize the acceleration of points through the following
loss function:

cilcc = |ail. (9)
Finally, the loss function is:

L=Lrecon taly+ fLacc, (10)




Table 1. Interpolation of scene flow on DeformaingTings4D’s long se-

3.1 Learning Continuous Deformation Field quences. EPE results are multiplied by x10* for better readability. The

. . highlighted rows denote 1st, 2nd , and 3rd best models. Note that
As a pI'OOf of concept, we start with a more constrained problem. when ¢=90%, our methods still produce plausible interpolations (shown in
Given sparsely sampled point trajectories, the goal is to fit an implicit Fig. 10).

continuous deformation field that can infer the trajectories of unseen

. x4 X6
points, ensuring alignment with observed data. We focus on a more Method Settings EPE| M’sIT|EPE| M’sI
challenging yet practical scenario where available temporal signals #p=0.03M | 138.80 0912 |146.51 0911

; .. . DOMA 4p=0.IM | 9259 0.876 |105.28 0.877

are scarce to demonstrate the strength of explicit spline interpola- [Zhang et al. 2024] 4p=16M | 47317 0249 | 45223 0254
tion. Specifically, we choose nine long sequences (each exceeding #p=2.1IM _ |927.26 0.115 | 906.67 0.118
. . . : r=30 | 5209 0.899 | 80.74 0.905

500 frames) from DeformingThings4D (humanoids) [Li et al. 2021] =100% 1-60 | 5423 o801 | 80.63 0808
and train models with every 4th/6th timestep, leaving 75%/83.3% r=90 | 55.01 0.882 | 8419 0.885
: : - : ResFields c=90% 5219 0.894 | 81.60 0.898
timesteps of timesteps for evaluation. Following DOMA [Zhang et al. Mihajovic etal. 2024] | <75 | 5075 0.89 | 8056 0398
2024], 25% vertices from the starting mesh are sampled to calculate c=50% ¥ | | 4579 0.896 | 74.35 0.894
L1 distance for supervision during training. The determination of N c=25% 48.60 0894 | 7492 0889
- _ TW/AIAP | 4572 0.927 | 7300 0.923

follows Eq. 1. In addition to end point error (EPE), we propose a new 1230 | 4298 0917 | 6873 0927
metric for evaluating spatial coherence using Moran’s I [Mihajlovic c=100% r=60% |40.747 0.919 768,287 0.926
1 Id . d 1-]- d * 1 . . r=90 41.67 0.917 69.38 0.926

et al. 2025; Moran 1950]. We provide its detailed implementation in SF-Siren-ResFields Ywio L. | 4215 0916 | 68.40 0924
the supplementary material. Twio Lace | 4266 0917 | 7012 0.929

T w/ AIAP 41.64 0.938 | 68.93 0.943
c=90% 1r=60 | 45.97 0.921 | 80.22 0.927

(] -

on setting 7). For example, ¢=50% indicates that the number of tem-

poral weights, v € R"*"  is reduced to half the number of training
timesteps, thereby decreasing the temporal DoF. However, motions
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Fig. 4. Qualitative comparison of X6 (left) and x4 (right) scene flow interpolation. Frames boxed in red are training timesteps, and the following ones
interpolated. Our method achieves fair interpolated motions without skinning. We provide more visual results in the extra pages.

\

significant practical value yet remains underexplored. Our model demon-

4 7\ i e Fig. 10. We present additional scene flow interpolation results, a task with
, ,
a strates strong performance and can serve as a baseline for future research.

{1\’ Ground ~ DOMA [ DOMA @'ResFields P& ResFields i) Oursiugy  Qurs
Truth [ §)s¥#p=0.03M A ~ #p=0.1M €=100%, r=60 Wc=50%, r=60 J&=100%, r=60 B§¥=90%, r=60




Table 2. Quantitative results on NeRF-DS [Yan et al. 2023] dataset. Notably, traditional metrics (PSNR and SSIM) penalize sharper but misaligned results over
blurry results. We introduce perturbation in Grid4D [Xu et al. 2024] to 4DGS [Wu et al. 2023] since it consistently improves grid-based methods, which we
denote with *. SC-GS’s [Huang et al. 2023] metrics except for M’s I are adopted from the official script.

As Basin Bell Cup
PSNRT SSIMT LPIPS| M’s IT|PSNRT SSIM{ LPIPS| M’s IT|PSNRT SSIMT LPIPS| M’s IT|PSNRT SSIMT LPIPS| M’s IT
Def.3D [Yang et al. 2023]  26.01 87.61 12.33 0.685 | 19.51 77.97 13.43 0.735 | 25.23 83.94 1207 0.676 | 24.53 88.11 11.47 0.719

Method

SC-GS [Huang et al. 2023] 26.00 - 11.40 0.924  19.60 - 15.40 0919 | 25.10 - 11.70 0.946 | 24.50 - 11.50  0.955
4DGS* [Wu et al. 2023] 25.60 86.27 1336 0.780 | 1890 76.97 15.43 0.775 | 24.60 82.66 14.05 0.758 | 24.42 88.23 11.55 0.787
4DGS [Wu et al. 2023] 25.69 8643 13.60 0.845 | 18.88 7592 17.59 0.723 | 2446 8230 1387 0.732 | 24.44 88.04 12.02 0.739
SF-Triaxes 26.89 88.46 13.40 0.865 | 19.45 79.29 16.04 0936 | 26.05 86.06 1258 0920 | 24.24 8853 11.90 0.925
SF-Triplanes 26.34 88.75 12.43 0.8391 | 19.61 79.85 14.67 0937 | 25.68 8527 13.01 0928 | 2440 88.60 11.33 0.932
SF-PE-ResFields 26.82 8890 12.01 0.932 | 19.70 79.18 13.67 0.959 | 25,55 84,50 1241 0972 | 2485 8892 11.21 0.962
Method Plate Press Sieve Average

PSNRT SSIMT LPIPS| M’s IT|PSNRT SSIMT LPIPS| M’s IT|PSNRT SSIMT LPIPS| M’s IT|PSNRT SSIMT LPIPS| M’s IT
Def3D [Yang et al. 2023]  20.33 80.26 19.12 0.702 | 25.40 85.61 13.66 0.720 | 2524 86.72 10.85 0.703 | 23.75 84.32 13.28 0.706

SC-GS [Huang et al. 2023] 20.20 - 20.20 0.938 | 26.60 - 13.50 0.945 | 26.00 - 11.40 0.927 | 24.10 - 14.00 0.939
4DGS* [Wu et al. 2023] 20.02 79.81 20.19 0869 | 25.61 85.03 14.41 0.744 | 25.76 87.47 11.51 0.801 | 23,56 83.78 14.36 0.788
4DGS [Wu et al. 2023] 1932 7837 2129 0.846 | 25.04 8435 1582 0.682 | 2494 87.01 1183 0.765 | 23.25 83.20 15.15 0.762
SF-Triaxes 20.92 81.74 18.63 0.986 | 26.22 88.21 14.09 0908 | 26.71 87.68 1147 0943 | 2436 8571 14.01 0.926
SF-Triplanes 21.17 82.57 18.14 0.982 | 26.49 88.29 13.10 00917 | 26,57 87.78 11.24 0927 | 2432 8587 13.42 0.931

SF-PE-ResFields 21.02 8251 1741 0993 | 27.09 8833 12.29 0967 | 25.80 8832 1096 0965 | 2440 8581 1285 0.964
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Fig. 5. Qualitative comparison of scene flows on NeRF-DS [Yan et al. 2023] dataset. With the derived regularizations in Sec. 2.3, our representation effectively
alleviates the high frequency caused by imprecise camera positions. We normalize all frames’ motion vectors or velocities, so the gray color indicates static
regions. We encourage readers to focus on the smoothness of motions.




4DGS* ) Grid4D SF-Triplanes SF-PE-ResFields 4DGS* Grid4D SF-PE-ResFields SF-PE-ResFields§
Wu et al. 2023 0 : Xu et al. 2024 w/ Lace w/ Lacc Ground Truth Wu et al. 2023 Xu et al. 2024 w/o Lace w/ Lacc Ground Truth

Fig. 6. Qualitative comparison of rendered images and scene flows on Hyper-NeRF [Park et al. 2021] dataset. Since the whole scene is jittery due to inaccurate

cameras, static regions are also colored, compared with the NeRF-DS[Yan et al. 2023] dataset. Additional results are included in Fig. 9.

Def.3D i 3 Grid4D
Y: [Xu et al. 2024 SF-Triplanes SF-PE-ResFields

Fig. 7. Qualitative comparison of rendered images and scene flows on Neu3D [Li et al. 2022] dataset. Our velocity regularizations preserve the handle with
reflection batter than the baselines. The differences are more evident in rendered motion vectors when photometric reconstructions are mixed.




Advected Scene

Fig. 8. Examples of motion advection and editing. Left: We propagate points in the last frame with the derived velocity. The plausible visual results showcase
the effectiveness of £,. Right: We adjust motions by only editing keyframes. In this work, we can only neatly achieve trifling modifications since the definition

of 'motion editing’ is still ambiguous, and LBS-based deformation is tedious for users. We leave a clearer description of such a task and a streamlined editing
pipeline as future work (e.g., cage-based deformation).
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