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3DGS is fast and the rendered images are photorealistic
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Topics

* The historic context of 3DGS
* Present: 3DGS and its recent progress

 Future discussions


https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

The Historic Context of 3DGS

* 3D Representations: Mesh, Point Cloud, Implicit Surface/Neural Field, etc.
* Volumetric Rendering
e Point Based Graphics

Some slides are borrowed from

* ECCV’22 Tutorial on Neural Volumetric Rendering for
Computer Vision

*  MIT 6.5980 — ML for Inverse Graphics — Vincent Sitzmann



3D Representations

Polygonal Meshes
* Vertices + Faces (often triangles)

e \oronoi tessellation
e Piecewise linear

— Attributes: colors, normals , textures



3D Representations

Implicit Surfaces and Neural Fields
* Signed distance field (SDF)

* Note:
— Explicit function: y=f(x)

— Implicit function: x2+y?-1=0

Neural Network
(D)




3D Representations

Implicit Surfaces and Neural Fields
* Neural Radiance Field or NeRF

* Objects as radiance/density fields (o, C)
density radiance
— implicit fields (e.g. MLP)--> NeRF

— explicit fields (e.g. 3D Gaussian Splatting) Light Field Representation

* (Differentiable) Volumetric Rendering

Ray Marching

Volume Rendering



3D Representations

Point Clouds

e Set of 3D points with (x, y, z) coordinates
* Associated attributes

— Color

— Normal



3D Representations

Point Clouds
* 3D Gaussian Splatting

Matsuki, Murai, Kelly, Davison. Gaussian Splatting SLAM, CVPR 2024



The Historic Context of 3DGS

* 3D Representations: Mesh, Point Cloud, Implicit Surface/Neural Field, etc.
* Volumetric Rendering
e Point Based Graphics
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Surface vs. volume rendering

Image
Camera / Sught Source

S«

% Scene Object

Surface rendering Volume rendering

Want to know how ray interacts with scene
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History of volume rendering



S.Chandrasekhar

RADIATIVE
TRANSFER

: y of volume rendering

Y

¥

> Theory of volume rendering co-opted from physics in the
1980s: absorption, emission, out-scattering/in-scattering

Ray tracing simulated cumulus cloud [Kajiya]

Chandrasekhar 1950, Radiative Transfer
Kajiya 1984, Ray Tracing Volume Densities
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History of volume rendering

Medical data visualisation [Levoy]

Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering

> Volume rendering applied to visualise 3D medical scan
data in 1990s
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Volumetric formulation for NeRF

Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global lllumination in the Volume Rendering Integral
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Volumetric formulation for NeRF

Rayr(t) = o+ td

Camera If a ray traveling through the scene hits
a particle at distance t along the ray,
we return its color ¢(t)

17



Volumetric formulation for 3DGS

"Near Plane”

Camera

"Far Plane"
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Volumetric formulation for 3DGS: Discretization & Rasterization

4—\

"Pixel Frustum”

Camera

Camera

Slide adopted from 6.5980 - ML for Inverse Graphics - Vincent Sitzmann
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The specific volumetric rendering method used by 3DGS is the following one:

volume

EWA Volume Splatting
Matthias Zwicker *

M. Zwicker, H. Pfister, J. van Baar, and M. Gross. 2001. EWA volume splatting. IEEE Conference on Visualization (VIS), 2001.

output
image
viewing projective volume classification, viewport ‘
transformation mapping shading and integration| transformation
object camera ay  screen
space space space
Section 4.3

Section 4.4 Section 3.2

Figure 1: The forward mapping volume rendering pipeline.
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Figure 2: Volume rendering. Left: Illustrating the volume render-
ing equation in 2D. Right: Approximations in typical splatting al-
gorithms.
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Point Set Surfaces, IEEE Visualization 2001

Point Set Surfaces

Marc Alexa Johannes Behr Daniel Cohen-Or Shachar Fleishman David Levin Claudio T. Silva
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Figure 2: An illustration of the paradigm: The possibly noisy or re-
dundant point set (purple points) defines a manifold (purple curve).
This manifold is sampled with (red) representation points. The rep-
resentation points define a different manifold (red curve). The spac-
ing of representation points depends on the desired accuracy of the

Figure 1: A point sct representing a statuc of an angel. The density. approximation.
of points and, thus, the accuracy of the shape represcntation arc
changing (intentionally) long the vertcal dirction.

Pulsar: Efficient sphere-based neural rendering, CVPR 2021

Pulsar: Efficient Sphere-based Neural Rendering

Christoph Lassner'  Michael Zollhéfer!
'Facebook Reality Labs

RGB colors in a neural shading step.

(a) 3D reconstruction and neural shading. (b) Sphere representation for (a). (c) Viewpoint Synthesis.

(d) Deformation based on lighting cues.

Figure 1: Pulsar is an efficient sphere-based differentiable renderering module that is orders of magnitude faster than com-
peting techniques, modular, and easy-to-use. It can be employed to solve a large variety of applications, since it is tightly
integrated with PyTorch. Using a sphere-based representation, it is possible to not only optimize for color and opacity, but
also for positions and radii (a, b, ¢). Due to the modular design, lighting cues can also be casily integrated (d).

Scene Representation  Differentiable Projection  Neural Shading

Figure 2: Visualization of the neural rendering pipeline.
Pulsar enables a particularly fast differentiable projection
step that scales to complex scene representations. The scene
representation itself can be produced by a neural network.
The channel information can be ‘latent’ and translated to

Neural Point-Based Graphics, ECCV 2020, video

Neural Point-Based Graphics

Kara-Ali Aliev!, Artem Sevastopolsky!?, Maria Kolos™?2, Dmitry Ulyanov®,
and Vietor Lempitsky'?

! Samsung AI Center
? Skolkovo Institute of Science and Technology

3 In3D.io

point cloud + RGB views fitted descriptors + novel views neural render

1 I 2
Fig. 1: Given a set of RGB views and a point cloud (top-left), our approach fits a neural deseriptor to

each point (top-middle), after which new views of a scene can be rendered (top-right). The method
works for a variety of scenes including 3D portraits (top) and interiors (bottom).
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MORE VIDEOS
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https://youtu.be/2uIe4iD4gSY

Topics

* The historic context of 3DGS
* Present: 3DGS and its recent progress

 Future discussions


https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Present: 3DGS, and how to make it stronger
and better

* 3DGS
e Directions for improvement



3D Gaussian Splatting (3DGS)

* What is 3DGS
* 3D surface representation: a cloud of 3D Gaussian blobs
» Differentiable and rasterized volumetric renderer
* Configuring the 3D points' locations by optimization

* A glimpse of 3DGS applications

* (Possible) issues with the original 3DGS work



3D Gaussian Splatting (3DGS)

A visual illustration of the 3D Gaussian blobs source: what s 30 Gaussian spiatting?)

3D point cloud as basis,

each 3D point wrapped with Gaussian blob,
"water-tight",

color based on spherical harmonics



https://www.youtube.com/watch?v=Tnij_xHEnXc&t=131s

3D Gaussian Splatting (3DGS)

 Whatis 3DGS
* 3D surface representation: a cloud of 3D Gaussian blobs
* Differentiable and rasterized volumetric renderer
* Configuring the 3D points' locations by optimization

* A glimpse of 3DGS applications

* (Possible) issues with the original 3DGS work



Recall: volumetric formulation for NeRF

Rayr(t) = o+ td

Camera If a ray traveling through the scene hits
a particle at distance t along the ray,
we return its color ¢(t)

28



Volumetric formulation for 3DGS

"Near Plane”

Camera

"Far Plane"

29



Volumetric formulation for 3DGS: Discretization & Rasterization

4—\

"Pixel Frustum”

Camera

Camera

Slide adopted from 6.5980 - ML for Inverse Graphics - Vincent Sitzmann
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The specific volumetric rendering method used by 3DGS is the following one:

volume

EWA Volume Splatting
Matthias Zwicker *

M. Zwicker, H. Pfister, J. van Baar, and M. Gross. 2001. EWA volume splatting. IEEE Conference on Visualization (VIS), 2001.

output
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viewing projective volume classification, viewport ‘
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Figure 1: The forward mapping volume rendering pipeline.
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ing equation in 2D. Right: Approximations in typical splatting al-
gorithms.

camera space
o -
2D to 3D parameterization 3D to 2D projection
2D to 2D compound mapping

|

Figure 6: Rendering surface kernels.



3D Gaussian Splatting (3DGS)

 Whatis 3DGS
* 3D surface representation: a cloud of 3D Gaussian blobs
» Differentiable and rasterized volumetric renderer
e Configuring the 3D points' locations by optimization

* A glimpse of 3DGS applications

* (Possible) issues with the original 3DGS work



3D Gaussian Splatting (3DGS)

Controlling the 3D points' locations by optimization

Camera
/' Projection \
.. / '\
e e Differentiable —_)
[ ]
ceee ¥ Initialization | —» . \ Tile Rasterizer Image
»
Adapti /
SfM Points 3D Gaussians ) apcwe |
Density Contro — Operation Flow —p Gradient Flow

Fig. 2. Optimization starts with the sparse SfM point cloud and creates a set of 3D Gaussians. We then optimize and adaptively control the density of this set
of Gaussians. During optimization we use our fast tile-based renderer, allowing competitive training times compared to SOTA fast radiance field methods.
Once trained, our renderer allows real-time navigation for a wide variety of scenes.



3D Gaussian Splatting (3DGS)

e Whatis 3DGS

* A glimpse of 3DGS applications
* Visual SLAM

* (Possible) issues with the original 3DGS work



A glimpse of 3DGS applications

Generation & Editing (Sec. 5.3)

Robotics (Sec. 5.1) Dynamic Scene Reconstruction (Sec. 5.2)
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Fig. 6. Typical applications benefited from GS (Sec. 5). Some images are borrowed from [132], [135], [146], [

154], [160], [166] and redrawn.

Guikun Chen and W. Wang, A Survey on 3D Gaussian Splatting, arXiv March 2025



A glimpse of 3DGS applications
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(c) Image to 3D Object [97]. (d) Multi-Object Generation [98].

Fig. 3: Four typical tasks of 3DGC in AIGC Applications.

Y Bao, T Ding, J Huo, Y Liu, Y Li, W Li, Y Gao, J Luo3D Gaussian Splatting: Survey, Technologies, Challenges, and Opportunities, IEEE Transactions on Circuits and Systems for Video Technology, 2025



3D Gaussian Splatting (3DGS)

e Whatis 3DGS

* Aglimpse of 3DGS applications
* Visual SLAM

* (Possible) issues with the original 3DGS work



Jianhao zheng et al. WildGS-SLAM: Monocular Gaussian Splatting SLAM
in Dynamic Environments, CVPR 2025

WildGS-SLAM

Monocular Gaussian Splatting SLAM in Dynamic
Environments
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Captured with Snagit 2019.1.7.6461  
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3DGS in building and interior designs: 3DGS + visual SLAM in Inria Campus:




Captured with Snagit 2019.1.7.6461  

Webcam - Integrated Camera  

Microphone - Microphone Array (Realtek(R) Audio)






Captured with Snagit 2019.1.7.6461  

Webcam - Integrated Camera  

Microphone - Microphone Array (Realtek(R) Audio)






3D Gaussian Splatting (3DGS)

 Whatis 3DGS
* Aglimpse of 3DGS applications

* (Possible) issues with the original 3DGS work



3D Gaussian Splatting (3DGS)

* (Possible) issues with 3DGS
* Significant memory consumption
 Somewhat bumpy surface representation
* Adapt the locations and shapes the cloud of 3D Gaussian blobs
* Issues with shadows and relighting, in comparison to physics based rendering (ray tracing)
» Static 3D scenes, no temporal capacity
* No learning involved, in comparison to NeRF

e Directions for improvement
e Faster and less memory consumption
* Less bumpy surface representation
* Better basis as a cloud of 3D points

* Issues with shadows, relighting, and improving rendering quality
 Temporal 3DGS

e Learning based approaches



3D Gaussian Splatting (3DGS)

 Whatis 3DGS
e Directions for improvement
* Faster and less memory consumption
* Less bumpy surface representation
* 2DGS / Gaussian Surfel
» Better basis as a cloud of 3D points
e |ssues with shadows and improving rendering quality
 Temporal 3DGS
* Learning based approaches
e Attribute extension



2D Gaussian Splatting for Geometrically Accurate Radiance Fields, ACM Siggraph, 2024, demo video

2D Gaussian Splatting for Geometrically Accurate Radiance Fields
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Figure 2: Comparison of 3DGS and 2DGS. 3DGS utilizes dif-
ferent intersection planes for value evaluation when viewing
from different viewpoints, resulting in inconsistency. Our
2DGS provides multi-view consistent value evaluations.

(a) 2D disks as surface clements {b) 2D Gaussian splatting (c) Meshing

Figure 1: Our method, ZDGS, (a) optimizes a set of 2D oriented disks to represent and re tmnslluclal:mnpln x real wa]dsoem
from multi-view RGB images. These pmuml Dmk s are t ghlymg ed to the surfaces. (b) With 2D Gaussian splatt;
allow real-time rendering of high qu a.lty el view images with view consiste Ilmnrml andrl pum. aps. (0 )any our

method nravides detailed and riansle mesh ion from the ized 21 d

2:I Gaussian

SuGaR: Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering, CVPR

2024

Figure 1. We introduce a method that extracts accurate and editable meshes from 3D Gaussian Splatting representations within minutes
on a single GPU. The meshes can be edited, animated, composited, etc. with very realistic Gaussian Splatting rendering, offering new
possibilities for Computer Graphics. Note for example that we changed the posture of the robot between the captured scene on the bottom
left and the composited scene on the right. The supplementary material provides more examples, including a video illustrating our results.

precise and extremely fast mesh extraction from 3DGS

a regularization term encourages the Gaussians to align well
with the surface of the scene

exploits this alignment to extract a mesh from the Gaussians
using Poisson reconstruction, which is fast, scalable, and
preserves details, in stead of the Marching Cubes


https://dl.acm.org/doi/pdf/10.1145/3641519.3657428
https://www.youtube.com/watch?v=oaHCtB6yiKU
https://anttwo.github.io/sugar/

3D Gaussian Splatting (3DGS)

 Whatis 3DGS
e Directions for improvement
* Faster and less memory consumption
* Less bumpy surface representation
* Better basis as a cloud of 3D points
e |ssues with shadows and improving rendering quality
 Temporal 3DGS
* Learning based approaches
e Attribute extension



3D Gaussian Splatting as Markov Chain Monte Carlo, NeurIPS 2024

3D Gaussian Splatting as Markov Chain Monte Carlo

Shakiba Kheradmand!, Daniel Rebain!, Gopal Sharma’, Weiwei Sun?,
Yang-Che Tseng!, Hossam Isack?, Abhishek Kar?
Andrea Tagliasacchi3= B Kwang Moo Yit
1University of British Columbia 2Gc:ucrgle Research 3GchmgIe DeepMind

4Simon Fraser University 5University of Toronto

3DGS vs. 3DGS-MCMC

Optimization done by 3DGS-MCMC (SGLD)

88 — A VgE g[Leorar(@ D] + Anoise - €

SGLD: Stochastic Gradient Langevin Dynamics
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3D Gaussian Splatting (3DGS)

 Whatis 3DGS
e Directions for improvement
* Faster and less memory consumption
* Less bumpy surface representation
» Better basis as a cloud of 3D points
* Issues with shadows and improving rendering quality
* Neural Renderer
* Ray tracing
 Temporal 3DGS
* Learning based approaches
e Attribute extension



Neural Point-Based Graphics, ECCV 2020
Neural Point-Based Graphics

Point-NeRF': Point-based Neural Radiance Fields

Kara-Ali Aliev?, Artem Sevastopolsky'?, Maria Kolos"?, Dmitry Ulyanov?,
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Fig. 1: Given a set of RGB views and a point cloud (top-left), our approach fits a neural descriptor to
each point (top-middle), after which new views of a scene can be rendered (top-right). The method
works for a variety of scenes including 3D portraits (top) and interiors (bottom).
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Fig. 2: An overview of our system. Given the point cloud P with neural descriptors D Figure 2. Overview of Point-NeRF. (a) From multi-view images, our model generates depth for each view by using a cost volume-based
and camera parameters C, we rasterize the points with z-buffer at several resolutions, 3D CNNs G, and extract 2D features from the input images by a 2D CNN G's. After aggregating the depth map, we obtain a point-based
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backorobagatine the perceptual loss function.



3D Gaussian Splatting (3DGS)

 Whatis 3DGS
e Directions for improvement
* Faster and less memory consumption
* Less bumpy surface representation
» Better basis as a cloud of 3D points
e |ssues with shadows and improving rendering quality
* Neural Renderer
* Ray tracing
 Temporal 3DGS
* Learning based approaches
e Attribute extension



3D Gaussian Ray Tracing: Fast Tracing of Particle Scenes, Siggraph Asia 2024, project website
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Fig. 1. We propose a method for fast forward and inverse ray tracing of particle-based scene representations such as Gaussians. The main idea is to construct Flg 4. Proxy Geometries: Examp les of BVH p” mitives considered.
encapsulating primitives around each particle, and insert them into a BVH to be rendered by a ray tracer specially adapted to the high density of overlapping
particles. Efficient ray tracing opens the door to many advanced techniques, including secondary ray effects like mirrors, refractions and shadows, as well as
highly-distorted cameras with rolling shutter effects and even stochastic sampling of rays. Project page: GaussianTracer.github.io
Trace Against and Get k-Closest Proxy Hits (§4.1) Evaluate Particle Response (§4.3) Update Radiance Integral
3D Particles Proxy Geometries and (§4.1) Rendering

/

Repeat Until All Particles Evaluated or Transmittance Theshold J

Fig. 3. Overview of the Accelerated Tracing Algorithm: Given a set of 3D particles, we first build the corresponding bounding primitives and insert them
into a BVH. To compute the incoming radiance along each ray, we trace rays against the BVH to get the next k particles. We then compute the intersected
particles’ response and accumulate the radiance according to Equation 6. The process repeats until all particles have been evaluated or the transmittance
meets a predefined threshold and the final rendering is returned.


https://gaussiantracer.github.io/

Relightable 3D Gaussian: Real-time Point Cloud Relighting with BRDF Decomposition and Ray Tracing, ECCV 2024

Relightable 3D Gaussian: Real-time Point Cloud Relighting
with BRDF Decomposition and Ray Tracing

Jian Gao"", Chun Gu?", Youtian Lin', Hao Zhu', Xun Cao', Li Zhang?™, Yao Yao'™
TNanjing University, 2 Fudan University

“Equally contributed.

Points PBR with Decomposed BRDF Ambient Occlusion from Point-based Ray Tracing

Rendering Relighting1 m.__g Rehghtmgz

Garden

Kitchen

Fig. 6: Qualitative results of relighting on real-world scenes.

(b) Normal

(¢) Ambient Occlusion (d) Physically Based Rendering

Fig. 1: Visual results of our pipeline on a multi-object composition scene. In
our pipeline, we represent a scene as Relightable 3D Gaussians. From multi-view images,
we recover the geometry and materials of individual objects with inverse rendering
techniques (see Sec. 3). Then, objects are easily composited into a new scene, thanks
to our explicit representation. After that, we solve the complex occlusions though point
based ray tracing (see Sec. 4) and re-light the new scene. Ultimately, we achieve high-
fidelity relighting with remarkably realistic shadow.



3D Gaussian Splatting (3DGS)

 Whatis 3DGS
e Directions for improvement
* Faster and less memory consumption
* Less bumpy surface representation
» Better basis as a cloud of 3D points
e |ssues with shadows and improving rendering quality
 Temporal 3DGS
* Learning based approaches
e Attribute extension



4D Gaussian Splatting for Real-Time Dynamic Scene Rendering
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Figure 1. Our method achieves real-time rendering’ for dynamic scenes at high image resolutions while maintaining high rendering quality.

The right figure is tested on synthetic datasets, where the radius of the dot corresponds to the training time. “Res”: resolution.

*The rendering speed not only depends on the image resolution but also the number of 3D Gaussians and the scale of deformation fields which are determined by the complexity

of the scene.
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4D Gaussian Splatting for Real-Time Dynamic Scene Rendering, CVPR 2024
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https://guanjunwu.github.io/4dgs/




3D Gaussian Splatting (3DGS)

 Whatis 3DGS
e Directions for improvement
* Faster and less memory consumption
* Less bumpy surface representation
» Better basis as a cloud of 3D points
e |ssues with shadows and improving rendering quality
 Temporal 3DGS
* Learning based approaches
* Learning Gaussian blobs
e Attribute extension
e 3D Large language field, and the connection to large language models (LLMs), VLMs (e.g. SAM)



L3DG: Latent 3D Gaussian Diffusion, Siggraph Asia 2024

L3DG: Latent 3D Gaussian Diffusion

BARBARA ROESSLE, Technical University of Munich, Germany
NORMAN MULLER, Meta Reality Labs Zurich, Switzerland
LORENZO PORZI, Meta Reality Labs Zurich, Switzerland
SAMUEL ROTA BULO, Meta Reality Labs Zurich, Switzerland
PETER KONTSCHIEDER, Meta Reality Labs Zurich, Switzerland
ANGELA DAI, Technical University of Munich, Germany
MATTHIAS NIESSNER, Technical University of Munich, Germany

enerated 30 Gaussians

Fig. 1. L3DG learns a compressed latent space of 3D Gaussian ions and efficiently izes novel scenes via diffusion in latent space. This
approach makes L3DG scalable to room-size scenes, which are generated from pure noise leading to geometrically realistic scenes of 3D Gaussians that can be
rendered in real-time. Above results are from our model trained on 3D-FRONT; we visualize the 3D Gaussian ellipsoids and show renderings.
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Fig. 2. L3DG method overview: our 3D Gausssian compression model learns to compress 3D Gaussians into sparse quantized features using sparse convolutions
and vector-quantization at the bottleneck (VQ-VAE). This allows our 3D diffusion model to efficiently operate on the compressed latent space. At test time,
novel scenes are generated by denoising in latent space, which can be sparsified and decoded to high quality 3D Gaussians.
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GAUSSTIAN MASKED AUTOENCODERS

Jathushan Rajasegaran'-2, Xinlei Chen', Rulilong Li?,
Christoph Feichtenhofer!, Jitendra Malik'-2, Shiry Ginosar?
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Figure 1: G ian Masked A ders (GMAE) maintains high performance in supervised
representation learning tasks such as classification, detection, and segmentation, but more importantly
enables zero-shot capabilities. GMAE introduces a learned mid-level intermediate representation
of 3D Gaussians that we train using pixel-based image reconstruction losses rather than direct
supervision by rendering the Gaussians into pixel space. Through this reconstruction loss, the
Gaussian collection learns to distribute non-uniformly in space and scale, dynamically following the
input image’s information density and high-frequency details. Having the degree of freedom in depth
allows the model to learn the layering of objects and scenes, which enables figure-ground separation,
layering, and edge detection without any training.
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Figure 2: Masked Autoencoding via Gaussian Splatting: The ViT Encoder processes masked

input image patches to produce (latent embeddings). The ViT Decoder then predicts explicit Gaussian

parameters based on (query tokens), including color, opacity, center, scale, and orientation. These

Gaussians are then rendered via differentiable volume splatting (Kerbl et al., 2023) to reconstruct the
original image. We pre-train our models fully end-to-end with self-supervision.


https://barbararoessle.github.io/l3dg/
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MaskGaussian: Adaptive 3D Gaussian Representation from Probabilistic Masks,
Arxiv, Dec. 2024

MaskGaussian: Adaptive 3D Gaussian Representation from Probabilistic Masks
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Key idea: 3D Gaussian points are probabilistic entities.
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Figure 1. Overview of MaskGaussian. We illustrate our pipeline with five Gaussians, 1 through G5, where G2 and G's are not sampled
and masked. First, all Gaussians are splatted in the standard manner, and differentiable masks are sampled from their existence distributions.
For each query pixel, a splat G; has cv; computed from normal attributes (center, scale, rotation). Splats with zero «; are filtered out, and the
remaining splats and their masks are passed into the masked-rasterization. We apply the masks in two places: the transmittance evolution
for T; and the color rendering for ¢;, as detailed in Eq 3 and Eq. 4. A masked splat (; (e.g., =2 in this figure) does not receive a gradient
for a;, and thus does not update its normal attributes, but it receives a gradient for mask m; and updates its existence probability.

GaussTR: Foundation Model-Aligned Gaussian Transformer for
Self-Supervised 3D Spatial Understanding, Arxiv, Dec. 2024
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Figure 2. Architectural overview of the GaussTR framework. The GaussTR framework initiates with extracting features and depth
estimation using various foundation models, including CLIP [10, 37] and Metric3D [19]. Subsequently, GaussTR predicts a sparse set
of Gaussian queries to represent the scene through a series of Transformer layers. During the training phase, the predicted Gaussians are
splatted to source views and aligned with original 2D features for supervision. For inference, the Gaussians are converted into logits by
measuring their similarity with category vectors, followed by voxelization to produce the final volumetric prediction.



Zero-1-to-G: Taming Pretrained 2D Diffusion Model for Direct 3D Generation, arXiv, Jan. 2025
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Figure 1: Zero-1-to-G tackles direct Gaussian splat generation from single images. By using
pretrained 2D diffusion models, we are able to generalize to in-the-wild objects.
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Figure 2: The pipeline of Zero-1-to-G. During training, we fine-tune both the VAE decoder and the

denoising UNet of Stable Diffusion. Decoder fine-tuning is required for high-quality splatter image
rendering because the renderings of splatter images are sensitive to pixel value changes; the attention
mechanism of denoising UNet is extended to model the multi-view and multi-attribute correlation.
At inference time, given a single view input of the target object, each component in the splatter
image is generated by conditioning the camera view and attribute switcher. The generated set of
splatter image components can be directly composed into Gaussian splats. Note that here we only
show 3 views of splatter images for better visualization, but we use 6 views in our experiment.



3D Assets Encoding & Decoding
Structured 3D Latents for Scalable and Versatile 3D Generation
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Figure 2. Overview of our method. Encoding & Decoding: We adopt a structured latent representation (SLAT) for 3D assets encoding,
which defines local latents on a sparse 3D grid to represent both geometry and appearance information. It is encoded from the 3D assets
by fusing and processing dense multiview visual features extracted from a DINOv2 encoder, and can be decoded into versatile output
representations with different decoders. Generation: Two specialized rectified flow transformers are utilized to generate SLAT, one for

the sparse structure and the other for local latents attached to it.

Flexible
Editing
Detail Local
Variation  Ediiting

Made of wood  Silver glossy metal Transparent glass Vowelized, pirelated House — Trees + River -

Figure 1. High-quality 3D assets generated by our method in various formats from text or image prompts (using GPT-40 and DALL-E
3). Our method enables versatile generation in about 10 seconds, offering vivid appearances with 3D Gaussians or Radiance Fields and
detailed seometries with meshes. It also supports flexible 3D editing. Best viewed with zoom-in.
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3D Gaussian Splatting (3DGS)

 Whatis 3DGS
e Directions for improvement
* Faster and less memory consumption
* Less bumpy surface representation
» Better basis as a cloud of 3D points
e |ssues with shadows and improving rendering quality
 Temporal 3DGS
* Learning based approaches

* Attribute extension
e 3D Large language field, and the connection to large language models (LLMs), VLMs (e.g. SAM)



LangSplat: 3D Language Gaussian Splatting, CVPR 2024
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Figure 1. Visualization of learned 3D language features of the previous SOTA method LERF and our LangSplat. While LERF generates
imprecise and vague 3D features, our LangSplat accurately captures object boundaries and provides precise 3D language fields. While
being effective. our LangSplat is also 199 x faster than LERF at the resolution of 1440 x 1080.
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Figure 2. The framework of our LangSplat. Our LangSplat leverages SAM to learn hierarchical semantics to address the point ambiguity
issue. Then segment masks are sent to the CLIP image encoder to extract the corresponding CLIP embeddings. We learn an autoencoder
with these obtained CLIP embeddings. Our 3D language Gaussian learn language features on the scene-specific latent space to reduce the
memory cost. During querying, the rendered language embeddings are sent to the decoder to recover the features on the CLIP space.

Visualization of Learned Language Feature!

'Different colors represent different language features.


https://langsplat.github.io/

Topics

* The historic context of 3DGS
* Present: 3DGS and its recent progress

e Future discussions


https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Some Thoughts on the future of (Al-assisted)
Rendering

* Is 3DGS the final/winning rendering pipeline?

* How Al/deep learning will contribute in rendering?

* What will be the next “stable” GPU?
* Polygonal mesh based 3D surface representation and its rendering pipeline
* PBR,i.e. ray tracing
* Al compute: convolution, transformer, gradient-based optimization
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