Reconstructing Humans with a Biomechanically Accurate Skeleton

Yan Xial'? Xiaowei Zhou? Etienne Vouga' Qixing Huang! Georgios Pavlakos®
1The University of Texas at Austin  2Zhejiang University

Input image Biomechanical skeleton Mesh & Skeleton Side view Top view

Figure 1. Human Skeleton and Mesh Recovery (HSMR). We propose an approach that recovers the biomechanical skeleton and the
surface mesh of a human from a single image. We adopt a recent biomechanical model, SKEL [24] and train a transformer to estimate the

parameters of the model. We encourage the reader to see the skeleton and surface reconstructions in our project page.



To summarize, our contributions are:
We present HSMR, which is, to the best of our knowl-
edge, the first end-to-end approach that can reconstruct
humans in 3D from a single image by estimating the pa-
rameters of a biomechanical skeleton model, SKEL [24].
Starting without any paired dataset of images and SKEL
ground truth, we show how to generate data to train our
model. Additionally, we incorporate a procedure to itera-
tively refine the quality of the pseudo ground truth.
We demonstrate that our approach can match the perfor-
mance of the most closely related state-of-the-art method
that regresses SMPL parameters [14], while achieving
clear improvements specifically for more challenging
cases with extreme poses and viewpoints.
We highlight the limitations of methods regressing pa-
rameters of simpler body models (i.e., SMPL), and show
how they tend to predict unnatural rotations for the body
joints, leading to biomechanically inaccurate results.
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Fig. 2. Creation of the paired skeleton and body dataset. Given a SMPL
motion sequence (a), we generate synthetic markers (b), and fit a biome-
chanical model to the makers using AddBiomechanics [Werling et al. 2022]

(c).



Preliminary — SKEL model

SMAL Model SKEL Model. The SKEL model [24] is a parametric bod
p y
model that combines the popular SMPL model [33] with
~ a biomechanical skeleton model, BSM. Specifically, SKEL
T € R3V A mesh template in the zero pose. corence defines a function S(g, 8) that takes as input parameters for
. ey & pose (¢ € R*Y) and shape (8 € R'?), and outputs a skin

NXK

WeR slend weight 1/_’ mesh M € R3*Y with N = 6890 vertices and a skeleton
S B _ mesh S. The surface mesh shares the same topology with
N = 6890 K =23 |'B| =10 |8| =72=24%3 SMPL, so we can apply a regressor W to get the locations

shape pose of the 3D joints X = W M. The shape space of SKEL, and
Limitation: SKEL carefully designs the kinematic parameters
Treat every articulation joint as a ball (socket) joint according to the real human biomechanical structure and
with three degrees of freedom. only models the realistic degrees of freedom.

Each pose parameter corresponds to a single degree
SMAL and SKEL share shape space, mesh topology of freedom and is represented as an Euler angle.
and kinematic tree. Wrists
24 joints, 10 have 3 DoF, 12 have 1 DoF, 2 have 2 DoF.
3 DoF: 6 values per joints (3x3 rotation matrix)
1 DoF: 2 values per joints (2x2 rotation matrix)
2 DoF: Directly regress the Euler angles.
Pose regression target: 88 = 6x10 + 2x12 + 2x2

Continuous rotation
representation
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Figure 2. Overview of our HSMR approach. A key design choice of HSMR is the adoption of the SKEL parametric body model [24]
which uses a biomechanically accurate skeleton. We employ a transformer-based architecture that takes as input a single image of a person
and estimates the pose g and shape parameters 8 of SKEL, as well as the camera 7. During training, we iteratively update the pseudo
ground truth we use to supervise our model, aiming to improve its quality. For this, we optimize the HSMR estimate to align with the
ground-truth 2D keypoints (SKELify). The output parameters of the optimization are used in future training iterations as supervision target.
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Training Data Generation

Training Data Generation. One key obstacle in training
our HSMR model is that there are no image datasets with
SKEL annotations. To address this, we propose to leverage S P A , ) 7 )
existing image datasets with SMPL (pseudo) ground truth | )
and convert them to SKEL parameters. This conversion is

Initial pseudo GT:

for the surface mesh. This allows us to optimize the SKEL
parameters, such that the SKEL mesh aligns with the target
SMPL mesh [24]. Through this procedure, we can acquire
some initial pseudo ground truth SKEL parameters for the
datasets typically used for human mesh recovery.

Figure 3. Failure cases of SMPL-to-SKEL conversion. While
we can technically fit SKEL to an instance of the SMPL model,
this conversion can often lead to problematic SKEL results. Here,
we visualize SMPL meshes (light green), and the SKEL meshes
we get when we try to fit the SKEL model to the SMPL mesh

Quallty Control (mltlal filteri ng Stage) (light blue). For the fitting, we use the optimization code of [24].

ters during the iterative refinement of our training. Besides ; : 5

the maxPVE check, we also adopt the other quality checks maxPVE Check  maxPVE = @-3%3’8’50 [VsmpL — Vskedll2-
Fhat HMR?.O [7-] performs to remove low quality fits. These maxPVE > 6em.

include discarding a fit for examples that a) have a shape

parameter with absolute value larger than 3, or b) have less Filtered images can potentially obtain pseudo ground truth
than four keypoints with confidence larger than 0. SKEL parameters during the iterative refinement



Training with Pseudo-Label Refinement

To achieve this, we propose an iterative procedure that
gradually updates the quality of the pseudo ground truth
SKEL parameters for each example. This is inspired by . 9
previous work on pseudo ground truth refinement [21, 27]. L shape (/6 ) _ H/B ” .
More specifically, for each image I of a person, given a 7 7 7
network estimate ¢™2, ¢, we refine the parameters itera-

Shape Prior

tively, such that they align with the 2D keypoints =* of the Pose Prior

person on the image [6, 42]. The optimized estimates of the FEsnape(B) = ||B]|?. For the pose parameters, however, we
pose and shape parameters, ¢*, 3* are used as more accurate do not have an existing pose prior for SKEL. Instead, we
pseudo ground truth for supervising the network. leverage the known limits of natural rotation for each joint.

For this iterative optimization, we propose an equivalent For example, let us assume that for a pose parameter g;, the

of SMPLlfy [6] for SKEL, which we call SKELlfy The op- lower limit 1s lz and the upper limit 1s Ui, i.e., q; € [lz, ’U;z]
timization is mainly guided by the 2D keypoints z*. Specif- In this case, we can add a term:

ically, we introduce a reprojection objective, Fy,,p, aiming

to align the projection of the 3D joints with tﬁe 2D key- Epose(q) = Z exp(li — qi) + exp(qi —wi),  (3)
points. This objective is similar to the second part of Equa- ¢
tion 2, with the addition of a robustifier [13] as in [6]. To
regularize the shape and pose parameters we add shape and
pose priors. The shape prior is inherited from SMPL, i.e.,

which strongly penalizes rotations that exceed the known
joint limits. If for a specific parameter there is no explicit
limit, we can omit it from the calculation of the objective.



Training with Pseudo-Label Refinement

SKELIify. To enable the refinement of the pseudo ground Iterative refinement routine. We execute the SKELIify op-
truth, we implement a fitting pipeline, similar to SM- timization periodically during training. More specifically,
PLify [3], that will allow us to fit the SKEL model to 2D we first warm up our network for 5k iterations. After the
body keypoints. To be compatible with previous conven- warmup, SKELify runs every 230 steps, and it will run the
tions, we call this SKELify. The SKELify objective for the optimization on the latest 18k prediction results.

2D keypoints reprojection follows [3, 16, 19]: After the optimization, we compare the results of SKE-
Lify, ¢*, 3*, with the ones that we maintain in our dictio-
Eypon(q, B) = Z c; p(?T( X;) — :U,’:) . 2) nary of pseudo ground truth SKEL parameters. If the SKE-

. Lify results have improved keypoint reprojection, then we
update the pseudo ground truth in our dictionary with the

Here, p is the Geman-McClure robustifier [6], and ¢; is pseudo labels ¢*, 5* acquired by SKELify.

the confidence of the keypoint 7. We already defined
Enape(B) and Eyos.(q) in the main manuscript. The loss
weights for normalized 2D keypoints loss, shape prior loss
and pose prior loss are 1.0, 5.0%, (4.78x0.17)? respectively.
For this iterative optimization, we use an LBFGS optimizer
equipped with strong Wolfe line search.



Experiments

| COCO | LSP-Extended | PoseTrack | 3DPW | Human3.6M | MOYO
Methods | @0.05t @0.11 | @0.05% @0.17 | @0.05t @0.17 | MPJPE| PA-MPJPE| | MPJPE| PA-MPIJPE|| MPIPE| PA-MPJPE|
PARE [25] 0.72 0.91 0.27 0.60 0.79 0.93 82.0 50.9 76.8 50.6 165.6 117.1
CLIFF [30] 0.64 0.88 0.32 0.66 0.75 0.92 —* —* 47.1 32.7 154.6 109.3
HybrlK [28] 0.61 0.80 0.37 0.69 0.81 0.94 80.0 48.8 54.4 34.5 140.1 93.2
PLIKS [48] 0.62 0.90 0.26 0.66 0.74 0.94 —* _* 47.0 34.5 132.6 91.8
HMR2.0 [14] 0.86 0.96 0.53 0.82 0.90 0.98 81.3 54.3 50.0 32.4 123.3 90.4
HSMR 0.85 0.96-0 0.51 0.81 0.90-0 0980 81.5 54.8 50.4 32.9 104.5.185 79.6-108

Table 1. Comparison with state-of-the-art approaches that regress SMPL parameters. The primary baseline for HSMR is the HMR2.0
network [14], since it is the closest to our design, in terms of architecture and training data We report PCK @0.05 & @0.1 for the 2D datasets
(COCO, LSP-Extended, PoseTrack) and MPJPE & PA-MPIJPE for the 3D datasets (3DPW, Human3.6M, MOYO). Even though we adopt
the SKEL model which is less flexible and we start without any initial ground truth for training, we are able to match the performance of
HMR2.0 on most datasets - with up to 0.5mm difference. More importantly, we outperform HMR?2.0 by a big gap of more than 10mm on
the challenging MOYO dataset that includes extreme poses and viewpoints. In the table, we explicitly report the differences in evaluation
metrics between our HSMR network and HMR2.0. *: trains on 3DPW.

| PARE | CLIFF | HybrlK | PLIKS | HMR2.0 | HSMR

poses) and viewpoints. We believe that this could be at- MPVPE| | 174.5 | 1557 | 143.6 | 1367 | 1422 | 120.1
. —_— . PA-MPVPE| | 121.9 | 110.6 | 944 | 94.8 1034 | 90.7
tributed to the stronger pose regularization that the biome-

chanical skeleton can impose, since it only allows the real- Table 2. Evaluation of the surface reconstruction accuracy. We
istic degrees of freedom. In fact, in Section 4.4, we verify report MPVPE and PA-MPVPE on the MOYO dataset.




Experiments

| COCO | LSP-Extended | PoseTrack | 3DPW | Human3.6M | MOYO
Methods | @0.057 @0.117 | @0.05¢ @0.17 | @0.051 @0.11 | MPIPE| PA-MPIPE| | MPIPE| PA-MPIPE| | MPIPE| PA-MPIPE,|
HMR2.0 [14] 0.86 0.96 0.53 0.82 0.90 0.98 81.3 54.3 50.0 324 123.3 90.4
HMR2.0 + SKEL fit | 0.78 0.95 0.49 0.79 0.90 0.98 81.0 54.4 53.6 34.1 130.5 93.7
HSMR 0.85 0.96 0.51 0.81 0.90 0.98 81.5 54.8 50.4 32.9 104.5 79.6

Table 3. Comparison with baseline for SKEL recovery. We start from the SMPL prediction of HMR2.0 [14] and we fit the SKEL model
to it with terative optimization [24]. This baseline corresponds to the “HMR2.0 + SKEL fit” row. We observe that this two-stage baseline
for SKEL recovery performs worse than HSMR, while it is also significantly slower (3 minutes for a single frame).

The MoYo Dataset contains

Multi-view video SMPL/-X fits Pressure map Body CoM

Input Image HMR2.0 HSMR

Figure 6. Qualitative comparison with HMR2.0 on MOYO. For
each example we show the input image and results for HMR2.0
and HSMR. Although the interpretation in the input view is rea-
sonable for both methods, HSMR achieves more accurate 3D re-
construction on the challenging poses and viewpoints of MOYO.




Experiments

Biomechanically-sound reconstruction

for each join_t. In this subsection, we inv_estigate whether
methods that regress SMPL parameters actually predict un-
natural joint rotations. We focus our attention specifically

on the elbow and the knee joints.

We consider various

thresholds (i.e., 10°, 20°, 30°) and report the frequency that
each method exceeds this threshold (i.e., rotation violation).
The complete results for MOYO are presented in Table 4.
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Figure 4. Examples of unnatural joint rotation for SMPL.

violation > 10° |

violation > 20° |

violation > 30° |

Methods |1eft elbow right elbow left knee right knee|left elbow right elbow left knee right knee|left elbow right elbow left knee right knee
PARE [25] 36.4% 424%  20.0% 23.2% 14.6% 15.4% 3.2% 3.8% 5.5% 4.8% 0.3% 0.4%
CLIFF [30] 34.2% 33.0% 283% 31.0% 13.0% 12.4% 4.8% 4.5% 5.2% 5.2% 0.5% 0.3%
HybrIK 58.7% 609%  52.9% 48.6% | 29.4% 346%  30.7%  27.0% 16.4% 21.0%  200% 17.5%
PLIKS 41.6% 447%  474% 43.8% 17.9% 227%  182% 17.6% 8.3% 11.4% 8.5% 8.5%
HMR2.0 [14]| 47.6% 443%  45.7%  56.4% 19.8% 19.6% 6.4% 11.6% 8.5% 8.8% 1.0% 1.6%
HSMR 0.0% 0.0% 39% 4.5% 0.0% 0.0% 0.2% 0.5% 0.0% 0.0% 0.0% 0.0%

Table 4. Frequency of unnatural rotations for mesh recovery approaches. We investigate how often each approach returns 3D bodies
with unnatural joint rotations. We experiment on MOYO [52] and report the frequency that the unnatural rotation exceeds different
thresholds ( 10°, 20° or 30°) for the elbow and the knee joints. Methods that regress SMPL parameters violate the joint limits frequently.
Instead, our HSMR method avoids severe violations because it relies on SKEL which models only the realistic degrees of freedom.



Experiments

| COCO  |LSP-Extended| PoseTrack | 3DPW | Human3.6M | MOYO
Models |@0.051 @0.11|@0.051 @0.11|@0.051 @0.11|MPJPE,, PA-MPJPE| [MPJPE| PA-MPJPE| |MPJPE| PA-MPJPE|
HSMR (ViT-B) 079 094 | 038 0.70 | 0.86 0.96 | 76.7 50.0 49.8 37.1 124.0 92.6
HSMR (ViT-B) w/ Euler angles 075 093 | 031 0.64 | 082 095 | 816 52.1 55.6 41.3 137.1 104.3
HSMR (ViT-B) w/o pseudo GT refinement| 0.75 093 | 0.37 0.70 | 0.84 096 | 81.1 51.1 52.0 38.1 126.5 96.2

Table 5. Ablation study on design choices. We benchmark our proposed model and ablate two design choices. First, we change the
regression target from the continuous representation [64] to the native Euler angles of SKEL. This has a negative effect across the board.
Then, we experiment without the pseudo ground truth refinement process. This also has a negative impact particularly on the 3D metrics.

Finally, we evaluate some key design decisions of our We present the detailed results of this ablation in Table 5.
pipeline. More specifically, we investigate the choice of re- /S We see, regressing the Euler angles directly produces a

. . clear drop in performance, justifying the use of the continu-
gression target for the pose parameters. We compare using

" . . . ous rotation representation for SKEL parameter regression.
the continuous rotation representation [64] as an alternative Moreover, BT R e e s

to the Euler angles (which 1s the native representation for the labels, the performance decreases for most datasets, par-
SKEL). Moreover, we assess the importance of iterative re- ticularly for the 3D metrics (for the 2D metrics, the differ-
finement of the SKEL pseudo ground truth that we employ ence 1s small, because the refinement does not affect the

quality of the 2D pseudo ground truth). These results con-

during training. For this evaluation, we perform a smaller
& & P firm the importance of both design choices.

scale ablation using a ViT-B backbone [61] for our network.
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Limitation

Limitations and future work. One of the limitations of
HSMR is the exclusive use of pseudo ground truth for train-
ing. Although our iterative refinement improves the pseudo
ground truth quality, the network could benefit from more
precise 3D labels. Moreover, we observe some inevitable
jitter in our temporal reconstructions. We believe that
follow-up work could address the recovery of smooth SKEL
motions. Finally, future work could consider incorporat-

Ing our estimates in a blom'eChanlcal S_lmmatlo'n CNVIron- Figure 7. Failure cases of our method. HSMR often fails in cases
ment [10] to encourage physically-plausible motion [53].  with motion blur extreme poses and rare viewpoints.
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