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2DGS: a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images.

Key idea: collapse the 3D volume into a set of 2D oriented planar Gaussian disks.
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(a) 2D disks as surface elements (b) 2D Gaussian splatting (c) Meshing

Fig. 1. Our method, 2DGS, (a) optimizes a set of 2D oriented disks to represent and reconstruct a complex real-world scene from multi-view RGB images. These
optimized 2D disks are tightly aligned to the surfaces. (b) With 2D Gaussian splatting, we allow real-time rendering of high quality novel view images with
view consistent normals and depth maps. (c) Finally, our method provides detailed and noise-free triangle mesh reconstruction from the optimized 2D disks.



Contributions

In summary, we make the following contributions:

e We present a highly efficient differentiable 2D Gaussian ren-
derer, enabling perspective-correct splatting by leveraging
2D surface modeling, ray-splat intersection, and volumetric
integration.

e We introduce two regularization losses for improved and
noise-free surface reconstruction.

e Our approach achieves state-of-the-art geometry reconstruc-
tion and NVS results compared to other explicit representa-
tions.



3DGS Quick Review
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This Gaussian is multiplied by a in our blending process.

3 3D GAUSSIAN SPLATTING

Kerbl et al. [Kerbl et al. 2023] propose to represent 3D scenes with
3D Gaussian primitives and render images using differentiable vol-
ume splatting. Specifically, 3DGS explicitly parameterizes Gaussian
primitives via 3D covariance matrix ¥ and their location py:

G(®) = exp(~5 (0~ p0) "> (b - p1)) 0

where the covariance matrix ¥ = RSS'R' is factorized into a scal-
ing matrix S and a rotation matrix R. To render an image, the 3D
Gaussian is transformed into the camera coordinates with world-
to-camera transform matrix W and projected to image plane via a
local affine transformation J [Zwicker et al. 2001a]:

> = JWZWTJT (2)

By skipping the third row and column of ', we obtain a 2D Gaussian
G%P with covariance matrix £?P. Next, 3DGS [Kerbl et al. 2023]
employs volumetric alpha blending to integrate alpha-weighted
appearance from front to back:

K k-1
c® =) qaxr G [ [(1-a; 6P ) (3)
|

k=1 J

where k is the index of the Gaussian primitives, a;. denotes the alpha
values and cy, is the view-dependent appearance. The attributes of
3D Gaussian primitives are optimized using a photometric loss.



3DGS Quick Review

Challenges in Surface Reconstruction. Reconstructing surfaces us-
ing 3D Gaussian modeling and splatting faces several challenges.
First, the volumetric radiance representation of 3D Gaussians con-
flicts with the thin nature of surfaces. Second, 3DGS does not na-
tively model surface normals, essential for high-quality surface
reconstruction. Third, the rasterization process in 3DGS lacks multi-
view consistency, leading to varied 2D intersection planes for dif-
ferent viewpoints [Keselman and Hebert 2023], as illustrated in
Figure 2 (a). Additionally, using an affine matrix for transforming a
3D Gaussian into ray space only yields accurate projections near the
center, compromising on perspective accuracy around surrounding
regions [Zwicker et al. 2004]. Therefore, it often results in noisy
reconstructions, as shown in Figure 5.

Intersection -PD Gaussian _
2D Gaussian

plane 4
@ @

Fig. 2. Comparison of 3DGS and 2DGS. 3DGS utilizes different intersec-
tion planes for value evaluation when viewing from different viewpoints,
resulting in inconsistency. Our 2DGS provides multi-view consistent value
evaluations.
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Fig. 5. Qualitative comparison on the DTU benchmark [Jensen et al. 2014].
Our 2DGS produces detailed and noise-free surfaces.



2DGS - Modeling
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As illustrated in Figure 3, our 2D splat is characterized by its
central point py, two principal tangential vectors t, and t,, and
a scaling vector S = (sy, sy) that controls the variances of the 2D
Gaussian. Notice that the primitive normal is defined by two orthog-
onal tangential vectors t,, = t;, X t,. We can arrange the orientation
into a 3 X 3 rotation matrix R = [ty, ty, ty] and the scaling factors
into a 3 X 3 diagonal matrix S whose last entry is zero.

A 2D Gaussian is therefore defined in a local tangent plane in
world space, which is parameterized:

P(u,v) = pg + sutyu + sptyv = H(u, 0, 1, 1)T 4)

_|sutu soto O pr| _ [RS pg
whereH—[ 0 o o 117lo 1 (5)

where H € 4 X 4 is a homogeneous transformation matrix repre-
senting the geometry of the 2D Gaussian. For the point u = (u,v) in
uv space, its 2D Gaussian value can then be evaluated by standard
Gaussian

(6)

u? + 02
2

6w = exp -

The center py, scaling (sy, sp), and the rotation (ty, t,) are learnable
parameters. Following 3DGS [Kerbl et al. 2023], each 2D Gaussian
primitive has opacity a and view-dependent appearance ¢ parame-
terized with spherical harmonics.
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Fig. 3. Illustration of 2D Gaussian Splatting. 2D Gaussian Splats are ellip-
tical disks characterized by a center point pg, tangential vectors t,, and
ty, and two scaling factors (s, and s;) control the variance. Their elliptical
projections are sampled through the ray-splat intersection ( Section 4.2) and
accumulated via alpha-blending in image space. 2DGS reconstructs surface
attributes such as colors, depths, and normals through gradient descent.

3D Gy = {Uk, Sk Ry, A, Cr )
2D Pk [Su; S, O] k [tu; tv» tu
X tv]k

ing “flat” 2D Gaussians embedded in 3D space. With 2D Gaussian
modeling, the primitive distributes densities within a planar disk,
defining the normal as the direction of the steepest change of den-
sity. This feature enables better alignment with thin surfaces. While



2DGS - Splatting
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coordinates. Specifically, projecting the 2D splat onto an image plane
can be described by a general 2D-to-2D mapping in homogeneous
coordinates. Let W € 4 X 4 be the transformation matrix from world
space to screen space. The screen space points are hence obtained

by
X= (XYL 5 )T = WP(u,v) = WH(u,0v, 1, )Tt (7)

where x represents a homogeneous ray emitted from the camera and
passing through pixel (x, y) and intersecting the splat at depth z. To
rasterize a 2D Gaussian, Zwicker et al. proposed to project its conic
into the screen space with an implicit method using M = (WH) L.
However, the inverse transformation introduces numerical insta-
bility especially when the splat degenerates into a line segment
(i.e., if it is viewed from the side). To address this issue, previous
surface splatting rendering methods discard such ill-conditioned
transformations using a pre-defined threshold. However, such a
scheme poses challenges within a differentiable rendering frame-

work, as thresholding can lead to unstable optimization. To address

this problem, we utilize an explicit ray-splat intersection inspired
by [Sigg et al. 2006].

Ray-splat Intersection. We efficiently locate the ray-splat inter-
sections by finding the intersection of three non-parallel planes, a
method initially designed for specialized hardware [Weyrich et al.
2007]. Given an image coordinate x = (x, y), we parameterize the
ray of a pixel as the intersection of two orthogonal planes: the
x-plane and the y-plane. Specifically, the x-plane is defined by a
normal vector (—1,0,0) and an offset x. Therefore, the x-plane can
be represented as a 4D homogeneous plane hy = (-1,0,0, x)T. Sim-
ilarly, the y-plane is hy, = (0,-1,0, y)L. Thus, the ray x = (x, 1) is
determined by the intersection of the x-plane and the y-planes.

Next, we transform both planes into the local coordinates of
the 2D Gaussian primitives, the uv-coordinate system. Note that
transforming points on a plane using a transformation matrix M
is equivalent to transforming the homogeneous plane parameters
using the inverse transpose M~ '. Therefore, applying M = (WH) ~?
is equivalent to (WH)T, eliminating explicit matrix inversion and
yielding:

h, = (WH)'hy h,=(WH)h, (8)

As introduced in Section 4.1, points on the 2D Gaussian plane are
represented as (u, o, 1,1). At the same time, the intersection point
should fall on the transformed x-plane and y-plane. Thus,

hy - (,0,1,1)T =hy - (u,0,1,1)T =0 (9)
This leads to an efficient solution for the intersection point u(x):
hh-hgh bl hihg

u(x) = 4o —uwo — 4o upo 10
™ hib? i} hibd-bgn,

where hi, hi are the i-th parameter of the 4D homogeneous plane
parameters. We obtain the depth z of the intersected points via Eq. 7
and evaluate the Gaussian value with Eq 6.



2DGS - Splatting

Degenerate Solutions. When a 2D Gaussian is observed from a
slanted viewpoint, it degenerates to a line in screen space. Therefore,
it might be missed during rasterization. To deal with these cases and
stabilize optimization, we employ the object-space low-pass filter
introduced in [Botsch et al. 2005]:

() = max {G(u(),6(—)}

g

(11)

where u(x) is given by (10) and c is the projection of center pg.

Intuitively, G(x) is lower-bounded by a fixed screen-space Gaussian
low-pass filter with center ¢ and radius o. In our experiments, we
set o = V2/2 to ensure sufficient pixels are used during rendering.

Rasterization. We follow a similar rasterization process as in
3DGS [Kerbl et al. 2023]. First, a screen space bounding box is com-
puted for each Gaussian primitive. Then, 2D Gaussians are sorted
based on the depth of their center and organized into tiles based on
their bounding boxes. Finally, volumetric alpha blending is used to
integrate alpha-weighted appearance from front to back:

i-1
c® =) uGium) | |0-a60®) (2
J=1

i=1

The iterative process is terminated when the accumulated opacity
reaches saturation.



2DGS - Regularization

Depth Distortion. Different from NeRF, 3DGS’s volume rendering
doesn’t consider the distance between intersected Gaussian primi-
tives. Therefore, spreading out Gaussians might result in a similar
color and depth rendering. This is different from surface rendering,
where rays intersect the first visible surface exactly once. To miti-
gate this issue, we take inspiration from Mip-NeRF360 [Barron et al.
2022a] and propose a depth distortion loss to concentrate the weight
distribution along the rays by minimizing the distance between the
ray-splat intersections:

La =Zwiw;‘|2i - zj] (13)
i.J

where w; = a; Gi(u(x)) [—[;;%(1 - aj Q}(u(x))) is the blending
weight of the i—th intersection and z; is the depth of the intersection
points. Unlike the distortion loss in Mip-NeRF360, where z; is the
distance between sampled points and is not optimized, our approach
directly encourages the concentration of the splats by adjusting the
intersection depth z;. Note that we implement this regularization
term efficiently with CUDA in a manner similar to [Sun et al. 2022b].

Normal Consistency. As our representation is based on 2D Gauss-
ian surface elements, we must ensure that all 2D splats are locally
aligned with the actual surfaces. In the context of volume rendering
where multiple semi-transparent surfels may exist along the ray,
we consider the actual surface at the median point of intersection
ps, Where the accumulated opacity reaches 0.5. We then align the
splats’ normal with the gradients of the depth maps as follows:

Ln =) wi(1-n]N) (14)

where i indexes over intersected splats along the ray,  denotes
the blending weight of the intersection point, n; represents the
normal of the splat that is oriented towards the camera, and N is
the normal estimated by the gradient of the depth map. Specifically,
N is computed with finite differences from nearby depth points as
follows:

Vxps X Vyps (15)
|Vxps X VyPs'

By aligning the splat normal with the estimated surface normal, we
ensure that 2D splats locally approximate the actual object surface.

N(x,y) =



Table 5. Quantitative studies for the regularization terms and mesh extrac-

2 D GS - Reg U |a r|Zat| on tion methods on the DTU dataset.

Accuracy | Completion | Average |
A. w/o normal consistency 1.35 1.13 1.24
B. w/o depth distortion 0.89 0.87 0.88
Final Loss. Finally, we optimize our model from an initial sparse C. w / expected depth 0.88 1.01 0.94
point cloud using a set of posed images. We minimize the following D. w / SPSR 1.25 0.89 1.07
loss function: E. Full Model 0.79 0.86 0.83

L=Lc+alyg+pLy (16)

where Lc is an RGB reconstruction loss combining £; with the
D-SSIM term from [Kerbl et al. 2023], while £; and £, are regu-
larization terms. We set @ = 1000 for bounded scenes, @ = 100 for
unbounded scenes, and f = 0.05 for all scenes.

Input (A) w/o.NC (B) w/o. DD Full Model

Fig. 6. Qualitative studies for the regularization effects. From left to right -
input image, surface normals without normal consistency, without depth
distortion, and our full model. Disabling the normal consistency loss leads
to noisy surface orientations; conversely, omitting depth distortion regular-
ization results in blurred surface normals. The complete model, employing
both regularizations, successfully captures sharp and flat features.



2DGS — Mesh Extraction

Scan 24

Mesh Extraction. To extract meshes from reconstructed 2D splats,
we render depth maps of the training views using the depth value
of the splats projected to the pixels and utilize truncated signed
distance fusion (TSDF) to fuse the reconstruction depth maps, using
Open3D [Zhou et al. 2018]. We set the voxel size to 0.004 and the
truncated threshold to 0.02 during TSDF fusion. We also extend the
original 3DGS to render depth and employ the same technique for
surface reconstruction for a fair comparison.

Scan 105

Fig. 5. Qualitative comparison on the DTU benchmark [Jensen et al. 2014].
Our 2DGS produces detailed and noise-free surfaces.



Experiments

Table 1. Quantitative comparison on the DTU Dataset [Jensen et al. 2014]. Our 2DGS achieves the highest reconstruction accuracy among other methods and
provides 100X speed up compared to the SDF based baselines.

24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean Time

% NeRF [Mildenhall et al. 2021] 1.90 1.60 185 0.58 2.28 1.27 147 167 205 1.07 0.88 253 1.06 115 0.96 1.49 > 12h
2. VoISDF [Yariv et al. 2021] 114 126 081 0.49 1.25 0.70 0.72 psesw 1.18 gusiGE 0.66 pisuisw 0.42 1 0.61 0.55 0.86 >12h
E  NeuS [Wang et al. 2021] 1.00 137 093 043 1.10 '0.:65 0.57 1.48 '1.09 0.83 10.52 1.20 1035 049 0.54 0.84 >12h
= 3DGS [Kerbl et al. 2023] 2.14 153 2.08 1.68 349 221 143 207 222 175 179 255 153 152 1.50 196 112m
=. SuGaR [Guédon and Lepetit 2023] 147 133 113 0.61 225 171 115 163 1.62 107 0.79 245 098 0.88 0.79 1.33 ~ 1h
§ 2DGS-15k (Ours) 048 092 042 040 104 083 083 136 127 076 0.72 1.63 040 0.76 0.60 083 55m
2DGS-30k (Ours) USRI OSSRl 0.83 0.81 '1.36 1.27 0.76 0.70 1.40 040 0.76 pSE 0.80 109m

Table 2. Quantitative results on the Tanks and Temples Dataset [Knapitsch

o ) Table 3. Performance comparison between 2DGS (ours), 3DGS and SuGaR
et al. 2017]. We report the F1 score and training time.

on the DTU dataset [Jensen et al. 2014]. We report the averaged chamfer
distance, PSNR (training-set view), reconstruction time, and model size.

NeuS Geo-Neus Neurlangelo | SuGaR 3DGS  Ours
Barn 0.29 0.33 0.70 0.14 013 041
Caterpillar 0.29 0.26 0.36 0.16  0.08  0.23 CD] PSNRT Time] MB (Storage)]
Courthouse | 0.17 015 0.28 008 009 016 3DGS [Kerbl et al 2023] 196 3576 112m 113
Ignatius 083 072 0.89 033 004 051 2}‘3%‘;1_{1[5?{“(‘;1;’;)&“‘1 Lepetit 2023] ;:g g:i; 5"‘51 21 1237
Meetingroom | 0.24  0.20 0.32 0.15 001  0.17 ' ‘ '
Truck 0.45 0.45 0.48 026 019 045 2DGS-30k (Ours) 080 3452 109m 52
Mean 0.38 0.35 0.50 0.19 009 032
Time >24h >24h >24h >1h 143m 155m




Experiments

Table 4. Quantitative results on Mip-NeRF 360 [Barron et al. 2022a] dataset.
All scores of the baseline methods are directly taken from their papers
whenever available. We report the performance of 3DGS, SuGaR and ours

using 30k iterations.

PSNRT SSIMT LIPPS |

Outdoor Scene

PSNRT SSIMT LIPPS |

Indoor scene

NeRF 21.46 0.458 0.515 26.84 0.790 0.370
Deep Blending | 21.54 0.524 0.364 26.40 0.844 0.261
Instant NGP 22.90 0.566 0.371 29.15 0.880 0.216
MERF 23.19 0.616 0.343 27.80 0.855 0.271
BakedSDF 22.47 0.585 0.349 27.06 0.836 0.258
MipNeRF360 24.47 0.691 0.283 31.72 0.917 0.180
Mobile-NeRF 21.95 0.470 0.470 - - -

SuGaR 22.93 0.629 0.356 29.43 0.906 0.225
3DGS 24.64 0.731 0.234 30.41 0.920 0.189
2DGS (Ours) 24.34 0.717 0.246 30.40 0.916 0.195

Ground truth

Fig. 7. Visualization of a plane tiled by 2D Gaussians. Affine approxima-
tion [Zwicker et al. 2001b] adopted in 3DGS [Kerbl et al. 2023] causes
perspective distortion and inaccurate depth, violating normal consistency.
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(a) Ground-truth (c) 3DGS, normals from depth gradient (e) Our model (2DGS), normals from depth gradient
S e " A : : ; : :

(b) MipNeRF360 [Barron et al. 2022b], SSIM=0.813 (d) 3DGS [Kerbl et al. 2023], SSIM=0.834 (f) Our model (2DGS), SSIM=0.845
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