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Contributions

*We identify the problem of geometry-aware semantic correspondence and show that pre-trained features of
foundation models (SD and DINOv2) struggle with geometric information.

*We propose to improve geometric awareness of the features in both unsupervised and supervised manners.
*We introduce a large-scale and challenging benchmark, AP-10K, for both training and evaluation.
*Our method boosts the overall performance on multiple benchmark datasets, especially on the geometry-

aware correspondence subset. It achieves an 85.6 PCK@0.10 score on SPair-71k, outperforming the state-of-
the-art method by more than 15%.
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Preliminary: Semantic correspondence using
SD + DINOv2 feature
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[1] zhang, Junyi, et al. "A tale of two features: Stable diffusion complements dino for zero-shot semantic correspondence." Advances
in Neural Information Processing Systems 36 (2024).



Limitations: geometric ambiguity

Figure 3. Annotations of geometry-aware semantic correspon-

dence (ve!low) and standard semantic correspondence (blue).

Geometry-ambiguous matching cases require an
understanding of instances’ orientations or
geometry
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(b) The performance gap between geometry-aware set (Geo.) and
standard set (Std.) of state-of-the-art methods. The geometry-aware
set accounts for 59.6% and 45.7% of the total keypoint pairs on SPair-
71k [32] and AP-10K [60], respectively.
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Gather geometry-aware subset:

(a) A keypoint from the source image and a keypoint from the target
image belong to the same semantic subgroup (eyes, paws...).

(b) There are other visible keypoint(s) belonging to the same
subgroup in the target image.

(c) Such cases account for 82.4% of total image pairs and 59.6% of
matching keypoints.



Global Pose Awareness of Deep Features

Analyze if deep features are aware of high-level pose (or viewpoint) information of an instance in an image.

Instance matching distance (IMD). Nearest neighboring ( Generaled Fose Template Set
Back Left Right

‘—‘!.j

d(p) = || F*(p) — F*(NNs ()|l »
> aw)

~

IMD(I, I, M*) = 3~ |[F*(p)-NN(F*(p), )|z,
peM>=

D

A 4

Pose prediction via IMD

pEMS IMD; IMDg
IMD, IMDy

* Generate multiple pose template sets.

§ Predict |"®
) pose
. Fompute the IMD between the input and template | Sourcelmage I°  Instance Mask M* |
images for each set.

* Predict the pose whose IMD is the smallest by a collective

vote across all sets. Feature IL/R FB LRorFB L/R/F/B
DINOvV2 63.8 100.0 75.0 51.0
SD 95.7 96.8 96.0 78.0

The deep features are aware of global pose information. SD+DINO 98.6  100.0 99.0 84.0




Improving Geo-Aware Correspondence

Test-time Adaptive Pose Alignment (zero-shot setting)

 Augment the source image by using a set of pose-
variant augmentations (e.g. flip, rotations etc.).

e Calculate the IMD between the augmented source
images and the target image.

* Choose the optimal pose with the minimum IMD
distance.

B

Figure 9. (Left) original image pairs. (Rigt) image pairs with the
test-time aligned pose. The reduced pose variation improves the
correspondence accuracy.

«—— This simple pose alignment can drastically
improve the correspondence accuracy in a
test-time, unsupervised manner.



Improving Geo-Aware Correspondence

Dense Training Objective (supervised setting) L = Lense + Lsparse.
~ ~ _ X t
Lopase = CL(E(P*), F/(PY), Laense = Y [16f — (P} + €)ll2,
)
CL: Contrastive loss P! = SoftArgmax(S;)
F = f(F) : the refined feature map g — Fs(pg)TFt

f () : atrainable lightweight post-processor

Add dropout at the input feature map F and
F: the raw feature map Gaussian noise € that perturbs the GT to prevent

overfitting
P: Annotated keypoint pairs set



Improving Geo-Aware Correspondence

Pose-variant Augmentation

A set of pose-varying augmentation schemes keypoint annotations are

) ) . ) _ correspondingly flipped to preserve
1) double flip: flipped source image and flipped target image; the inherent geometric concept

2) single flip: flipped source image and original target image; (e.g. the left paw should be the right
3) self flip: source image and flipped source image. :|' paw after flip).

Table 5. Ablation study on SPair-71k. We report the PCK @ arppox
results for both standard set (Std.) and geometry-aware set (Geo.).

Window Soft Argmax The best performances are bold. Our default method is underlined.
SPair-71k (Std.)  SPair-71k (Geo.)
1) we determine the target center location using Model Variants 001 005 010 001 005 0.10
the argmax operation. Baseline 96 577 746 15 503 67.6

+ Dense Training Objective 13.0 652 783 11.1 588 71.9
. . Pose-variant Augmentation 13.8 66.7 80.0 114 605 739
2) Apply soft-argmax on the pre-defined window. + Perturbation & Dropout ~ 15.1 693 813 135 633 754
Soft Argmax Inference 205 696 81.0 169 619 750
Window Soft Argmax (5) 223 721 820 198 66.0 76.5
Window Soft Argmax (9) 220 727 825 192 663 77.1
Window Soft Argmax (15) 21.6 72.6 829 182 660 774
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Improving Geo-Aware Correspondence

Dense Training Objective (supervised setting)
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Figure 8. (Left) previous supervised methods [30, 61] with a sparse training objective. (Right) an overview of our supervised method. Only
the lightweight post-processor is updated during training. Both the pair augmentation and feature space Dropout are for training only.



Experimental Results

Implementation details. We follow [61] to resize the in- Datasets
put image to 960% and 8407 to extract the SD and DINOv2
features, respectively, yielding a feature map at a resolution Two widely-used benchmark

of 60 x 60. The post-processor on top of the fused fea-
tures is four bottleneck layers [13] with SM parameters in
total. The model is trained with the AdamW optimizer [28]
of weight decay rate 0.001 and the one-cycle scheduler [45]

PF-Pascal and Spair-71k

of 1.25 x 103 learning rate and 0.3 percentage for the in- Propose a new large-scale benchmark with AP-10K dataset
creasing cycle. We train all our models on one NVIDIA - . : .
RTX3090 GPU. Refer to Supp. A for more details. AP-10K: an existing animal pose estimation

dataset consists of 10015 images across 23
families and 54 species. All images share the

Evaluation metrics. We follow the common practice and same keypoint annotation of 17 keypoints.

use the Percentage of Correct Keypoints (PCK) [59] to eval-
uate the correspondence accuracy. The PCK is computed
within a threshold of a - maxz(h,w) where « is a positive
decimal (e.g., 0.10) and (h,w) denotes the dimensions of
the bounding box of an instance in SPair-71k and AP-10K, 3 setting for validation and testing:

and the dimensions of the images in PF-Pascal, respectively. intra-species / cross-species / cross-family

261k training / 17k validation / 35k testing pairs.



Experimental Results

Table 2. Evaluation on SPair-71k. Per-class and average PCK@0.10 on test split. The methods are categorized into two types: supervised
(S) and unsupervised (U). {: index is used to flip source keypoints at test time. *: fine-tuned backbone. We report per point PCK result for
the (U) methods, following [10, 35], and per image result for the (S) methods, following [7, 16, 25, 26]. The highest PCK are highlighted
in bold, while the second highest are underlined. Both our zero-shot and supervised methods outperform prior arts across all categories.

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog Horse Motor Person Plant Sheep Train TV All
U ASIC [10] 57.9 252 68.1 24.7 35.4 28.4309 54.8 21.6 45.047.2 399 262 488 14.5 245 49.0 24.6 369
DINOvV2+NN [36, 61] 72.7 62.0 85.2 41.3 40.4 52.351.571.1 36.2 67.1 64.6 67.6 61.0 68.2 30.7 62.0 543 24.255.6
DIFT [46] 63.5 54.5 80.8 34.5 46.2 52.748.3 77.7 39.0 76.0 54.9 61.3 533 46.0 57.8 57.1 71.1 63.457.7
SD+DINO [61] 73.0 64.1 86.4 40.7 52.9 55.053.878.6 45.5 773 64.7 69.7 633 69.2 584 67.6 66.2 53.564.0

UT NeuCongeal' [35] - 291 - - - - - 533 - - 352 - - - - g - - -
Ours-Zero-Shot’ 78.0 66.4 90.2 44.5 60.1 66.6 60.8 82.7 53.2 82.369.5 75.1 66.1 71.7 58.9 71.6 83.8 55.569.6

S SCOT [26] 349 20.7 63.8 21.1 43.5 27.3 21.3 63.1 20.0 429 42.5 31.1 29.8 35.0 27.7 244 484 40.835.6
PMNC* [25] 54.1 359 74.9 36.5 42.1 48.840.0 72.6 21.1 67.6 58.1 50.5 40.1 54.1 43.3 35.7 74.5 59.9 504
SCorrSAN* [16] 57.1 40.3 78.3 38.1 51.8 57.847.1 67.9 25.2 71.3 639 493 453 498 48.8 403 77.7 69.755.3
CATs++* [7] 60.6 46.9 82.5 41.6 56.8 64.9 504 72.8 29.2 75.8 65.4 62.5 509 56.1 54.8 48.2 80.9 749 59.8
DHF [30] 74.0 61.0 87.2 40.7 47.8 70.0 74.4 80.9 38.5 76.1 60.9 66.8 66.6 70.3 58.0 543 87.4 60.3 64.9
SD+DINO (S) [61]  81.2 66.9 91.6 61.4 57.4 85.3 83.1 90.8 54.5 88.575.1 802 719 779 60.7 68.9 924 65.8 74.6
Ours 87.0 73.7 954 69.0 66.1 91.6 86.9 90.7 68.6 93.6 85.2 84.6 787 869 79.7 79.0 96.9 84.3 82.9

Ours (Adapt. Pose)! 87.6 74.1 95.5 70.1 66.7 92.0 87.4 91.4 68.0 932 85.5 84.7 79.9 87.8 79.9 789 96.9 84.8 83.2
Ours (AP-10K P.T.) 92.0 76.1 97.2 70.4 70.5 91.4 89.7 92.7 73.4 95.0 90.5 87.7 81.8 91.6 82.3 834 96.5 85.3 85.6




Experimental Results

Table 3. Evaluation on SPair-71k, AP-10K, and PF-Pascal datasets at different PCK levels. We report the performance of the AP-10K
intra-species (1.S.), cross-species (C.S.), and cross-family (C.F.) test sets. {: index is used to flip source keypoints at test time. *: fine-tuned
backbone. We report the per image PCK results (hence the (U) results are different from Tab. 2). The highest and second PCK among each
category is bold and underlined, respectively. Both our zero-shot and supervised methods outperform all previous methods significantly.

SPair-71k AP-10K-LS. AP-10K-C.S. AP-10K-C.F. PF-Pascal
Method 0.01 005 0.10 | 001 0.05 0.10 | 0.01 005 0.10 | 001 0.05 0.10 | 005 0.10 0.5
U DINOV2+NN [36,61] 63 384 539 | 64 410 609 | 53 370 573 | 44 294 474 | 630 792 851
DIFT [46] 72 397 529 | 62 348 503 | 51 308 460 | 37 224 350 | 660 811 872
SD+DINO [61] 79 447 599 | 76 435 629 | 64 397 593 | 52 308 483 | 715 858 906
U Ours-Zero-Shot! 99 491 654 | 113 498 687 | 93 449 646 | 74 349 527 | 740 862 90.7
S SCorrSAN* [16] 36 363 553 | - - - - - - - - - | 815 933 966
CATs++* [7] 43 407 598 | - - - - - - - - - | 849 938 968
DHF [30] 87 502 649 | 80 458 627 | 68 424 600 | 50 327 478 | 780 904 94.1
SD+DINO (S) [61] 96 577 746 | 99 570 770 | 88 539 740 | 69 462 658 | 809 93.6 969
Ours 216 726 829 | 231 73.0 875|217 702 858 | 184 63.1 784 | 855 951 974

Ours (Adapt. Pose)’ 21.7 72.8 832 | 23.2 732 877 | 217 703 859 | 183 63.2 785 | 853 950 974
Ours (AP-10K P.T.) 220 753 85.6 - - - - - - - - - 859 95.7 98.0




Experimental Results

Table 4. Evaluation on the geometry-aware subset. We report
the results on both SPair-71k and AP-10K intra-species test sets

across three PCK levels. The best performances are bold.

SPair-71k AP-10K-LS.

Method 0.01 0.05 0.10 0.01 0.05 0.10

U DINOv2+NN [36,61] 3.4 282 420 21 268 486

DIFT [46] 46 300 425 1.8 189 346

SD+DINO [61] 53 345 493 25 280 495

U Ours-Zero-Shot! 69 395 568 35 359 578
S SCorrSAN* [16] 28 300 494 - - -
CATs++* [7] 32 331 530 - - -

DHEF [30] 68 421 567 25 30.0 507

SD+DINO (S) [61] 75 503 676 40 437 693

Ours 182 66.0 774 104 64.8 828

Ours (Adapt. Pose)! 183 66.3 780 10.5 65.0 83.2
Ours (AP-10KP.T) 201 71.0 823 - - -
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Figure 4. Per-category evaluation of state-of-the-art methods
on SPair-71k geometry-aware subset (Geo.) and standard set.
While the geometry-aware subset accounts for 60% of the total
matching keypoints, we observe a substantial performance gap be-
tween the two sets for all the methods.



SD+DINO SD+DINO (S) Ours
Figure 10. Qualitative comparison. Green lines indicate correct matches and red incorrect. Our method can build geometrically correct
semantic correspondence even at extreme view variation, while both versions of SD+DINO struggle with geometric ambiguity (e.g., ear
and hands in the person example, corners in the bus example). Please refer to Supp. E.2 and E.3 for more results.

Source Image SD+DINO SD+DINO (S) Ours
Figure 11. Visualization of the similarity map. For the red query point, SD+DINO matches appearance-similar points (wooden desk,
floor); SD+DINO (S) returns a noisy similarity map due to the query point being out of supervision. Our method locates both semantically
and geometrically correct points. The keypoint supervision of “chair” category is in blue, though these images are not in the training set.



Limitations

O

Source Image .T. Points
Figure 12. Limitations. Top: small instance. Bottom: scenarios
combining both large pose variation and severe deformation.
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