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Task: Dense Visual Semantic Correspondence

Semantic correspondence (SC) estimation aims to find local regions that correspond to the same semantic
entities across a collection of images , where each image contains a different instance of the same object
category.

A related task: canonical surface mapping [1]

[1] Kulkarni, Nilesh, Abhinav Gupta, and Shubham Tulsiani. "Canonical surface mapping via geometric cycle consistency.“ ICCV. 2019.



Limitations of SSL-based Correspondence Matching

Input DINOvV2 Ours Limitations:

Current models are typically trained only on 2D
images, they are not able to learn 3D-aware
representations, and often converge to similar
features for object parts that share appearance but
not fine-grained semantics. (2 main limitations,

X collapsed sides v distinct sides symmetries and repeated parts)

(i) they fail to correctly distinguish object symmetries,
e.g. the left and right side of the car have the same
features

(i) they struggle to distinguish individual parts, e.g.
the wheels are represented by the same features
X collapsed parts © |/ distinct parts irrespective of their location on the car.




How to address above limitations without:

- re-training SSL model

- Using groundtruth correspondences

Solution:

Introducing explicit 3D knowledge via a weak geometric spherical prior
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DINOv2 noLl,, noL,; noZl, full model

Tra i n i ng 56.2 58.6 61.2 56.0 63.6

Table 4. Average PCK@0.1 scores when training and testing on
SPair-71k using different ablated versions of our approach.

L =Ly +03L,+03.,+0.1

Reconstruction Loss Instance masks  Cosine distance
l / DINOv2 0.1,0.1,0.1 03,03,03 1,1,03 0.1,0.1,003 0.3,03,0.1
1 Z 56.2 62.2 62.5 61.4 62.0 63.6
Lice = — M(I,x)xT (oI, x).S=z(fs(I,x))),
o A - ( ' ) ( ( ) ( ( ))) f Table A2. Average PCK@().1 on SPair-71k for different values of
re A

gemelric losses.

Viewpoint regularization

Assumption:
The average coordinate of a spherical map of an image | can be viewed as a coarse

approximation of the camera viewpoint under which the object is seen.
# bins 4 8 16 32 64 128 360
PCK@0.1 60.1 71.8 71.1 71.2 692 68.1 710

_ T . ! 2 Table A3. Impact of viewpoint supervision granularity. Here we
‘CUP o Z | |?}J vr ,UE(fS (I) ) / '!r(fS (I )) | | ' train with coarse-to-finer discretized poses from Freiburg cars and
1.1’ evaluate on the car category in SPair-71k. Only when using very
few bins (i.e. four) does the performance significantly drop. This
. . indicates that our approach is capable of training on relatively
Gt camera VIeWpOInt Average direction weak pose supervision. For context, for the results in the main
paper, we use the eight viewpoint bins provided by the SPair-71k
annotations.

In practice, v; is discretized among a small number of bins, representing azimuth angle



Training

Spherical Coordinates Relative Distance Loss L, Orientation Loss £,

Relative distance loss

Assumption |ja —b|| < |la —c¢|| <= T'(sa,s8) < (84, 5c)

Lrq = max(I'(fs(I,anc), fs(I,pos))

[(fs(I,anc), fs(I,neg)) + 9,0}, 6=05 Figure 3. Illustration of our geometry losses £,; and £,. The left
image shows a spherical map from which a triplet of points is sam-
pled. £, : as the anchor patch a is closer to the positive b on the
image compared with the negative c, its corresponding position s,
on the sphere must also be closer to s, than s.. £,: after project-
ing sp and s. to the plane tangent to the sphere at s,, we ensure
orientation is preserved by enforcing positive colinearity between

Assumption image triplets of large determinants should up X uc and the normal vector n.
also have large determinant on the sphere

anc = a pos = argmingep glla — x|l neg = argmaxyep glla — x||

Orientation loss

Swapping b and c if d; is negative
0 if df <d, d; =det(b—a,c—a)
war(d, —dg,0) ifdy = d;.
mazid: —ds,0) 1dr ds = det(P,(sp) — 50), Pa(c) = 5a)

\

a threshold dt=0.7

Lo =

Linear projection to the plane tangent



Correspondence via combined representations

p" = argmin, a I'(fs(I,q), fs(I', p)) a =02
+(1—a) (ﬁfﬁ(f,f;r),cb(f’g;n))g

» » 4 B I @B & & 8B e w o of ¥ i ¥ o Q O g

g CATS [Y] 520 347 722 343 499 575 436 665 244 632 565 520 426 417 430 336 726 58.0 | 499
% MMNet+FCN [58] | 559 370 650 354 500 639 457 628 287 650 547 51.6 385 346 417 363 717 625|504
S SCorrSan [26] 57.1 403 783 38.1 518 578 471 679 252 713 639 493 453 498 488 403 777 69.7 | 544
= DINOvI [6] 443 268 576 220 293 328 197 540 149 401 393 293 290 370 200 282 406 21.1 ] 326
% ASIC [16] 579 252 68.1 247 354 284 309 548 216 450 472 399 262 488 145 245 490 246 | 37.0
A~ Ours 47.1 260 709 218 375 349 324 600 232 536 485 425 283 427 21.1 419 397 41.7 | 397
a DIFT [48] 63.5 545 808 345 462 527 483 717 390 760 549 613 533 460 578 57.1 7T1L.1 634|577
wvn SDI[57] 63.1 556 802 338 449 493 478 744 384 708 537 61.1 544 550 548 535 650 533 56.1
o DINOv2 [39] 7277 620 852 413 404 523 515 7.1 362 67.1 646 676 61.0 682 307 62.0 543 242 | 56.2
S DINOv2 +SD [57] | 73.0 o641 864 407 529 550 538 786 455 773 o647 697 633 692 584 676 662 535|633
Z Ours (sphere only) | 46.7 288 663 330 365 666 59.1 749 254 657 501 527 27.1 137 158 466 735 367|455
& Ours 769 612 859 421 484 733 67.2 800 463 802 667 712 660 639 362 68.6 678 422|636
Ours + SD 748 645 871 456 527 778 714 824 477 820 673 739 676 600 499 698 785 59.1 | 673

Table 1. Keypoint matching scores on SPair-71k evaluated using PCK@0.1 with macro-averaging for the summary scores. We present our
approach using DINOv1 [6] features (middle rows) and DINOv2 [39] features (bottom rows). In both cases, we improve over the DINO
only baselines and are superior to fully supervised methods (top rows). Bold entries are best per category and underlined are second-best.



Spair71k data example
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Figure 4. Qualitative comparison of dense correspondence maps. For DINOv2, SD, and DINO+SD features we perform PCA on the
segmented object features independently for each category, then visualize the three main components. Note that the SD and DINO+SD
features are not completely equivalent to the ones used to compute matches, but are provided here for illustration. Spherical maps from
fs (Sphere) for our approach are visualized directly. Our spherical maps correctly identify the different sides of objects, whereas other
features fail to capture these differences.



DINOv2 [40] 535 540 602 355 444 363 31.7 613 374 547 525 515 488 482 378 441 474 382 | 465
SD [58] 444 485 545 315 452 327 300 684 358 552 479 481 448 423 45 392 527 512|454
DINOv2 + SD[58] | 520 559 592 347 490 36.0 325 703 398 598 531 524 506 504 478 462 533 498 | 496
Ours (sphere only) | 384 342 539 33.0 379 497 434 717 298 57.1 458 425 324 270 295 37.1 574 36.0 | 421
Ours 60.7 512 631 384 450 559 457 697 404 632 548 543 512 487 388 479 555 422|515
Ours + SD 589 542 622 39.6 466 545 471 762 409 653 573 561 542 474 437 494 624 520 | 538
Table 2. Keypoint matching scores on SPair-71k evaluated using KAP@().1 with macro-averaging for the summary scores.
| Dv2 SD Dv2+SD Ours Ours+SD
PCK@0.1 | 659 560 681 687 6938 DINOv2 SD DINOv2+SD Ours Ours+SD
KAP@0.1 | 55.0 50.7 56.8 58.9 60.6 34 0.38 0.35 33 0.34

Table 3. Average scores when evaluating on AwA-pose using a
random subset of 200 pairs per category. ‘Ours’ denotes our model
trained on SPair-71k with a DINOv2 backbone.

Table 5. Descriptor computation throughput in pairs/second at in-

ference time on a single A5000 GPU, where higher is better.



