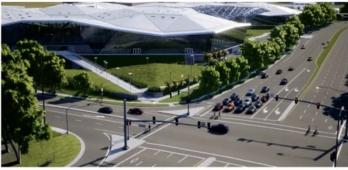
Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis

Tianchang Shen^{1,2,3}Jun Gao^{1,2,3}Kangxue Yin¹Ming-Yu Liu¹Sanja Fidler^{1,2,3}¹NVIDIA²University of Toronto³Vector Institute

NeurIPS 2021

Many Field Requires High-Quality 3D Content

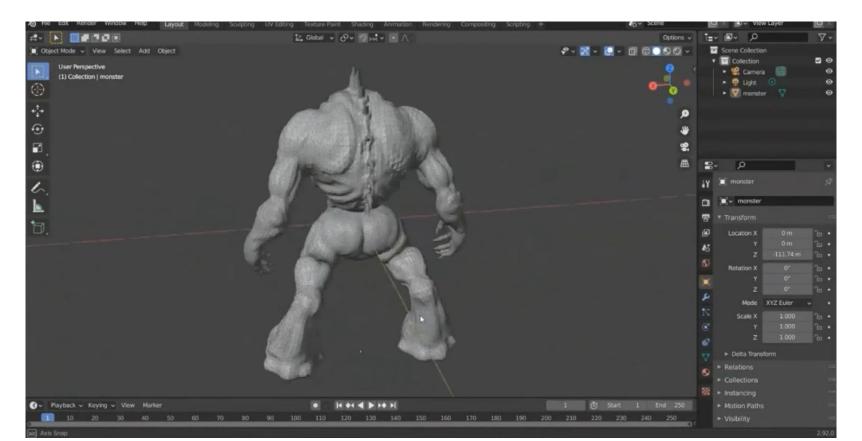


AV Simulation

VR/AR

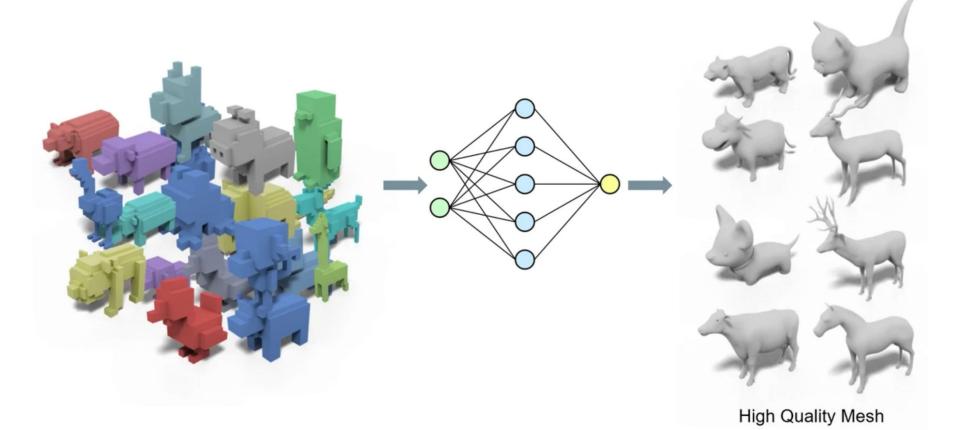
Source: TurboSquid

Creating High-Quality 3D Content Requires Expertise



Rough 3D Shapes

Rough 3D Shapes \rightarrow Detailed 3D Shapes



Motivation

What kind of 3D representation should we use to represent high-quality 3D contents?

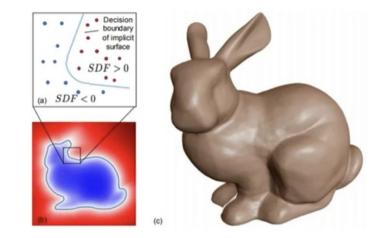
Discrete Representations

Limited to pre-defined resolution or topology.

Deep Implicit Fields (DIFs)

 $f_{\theta}(x, y, z) \approx s(x, y, z)$

Signed distance from (x, y, z) to closest surface



DeepSDF [Park et al. 2019]

Deep Implicit Fields (DIFs)

 $f_\theta(x,y,z)\approx s(x,y,z)$

Pros:

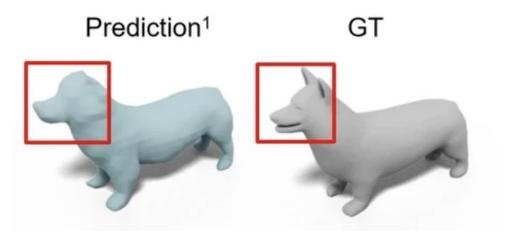
- Represent arbitrary topology
- Continuous

¹Result of [Peng et al. 2020] Deep Implicit Fields (DIFs)

 $f_{\theta}(x,y,z) \approx s(x,y,z)$

Cons:

 Regressing SDF/OF in generative tasks do not capture geometric details

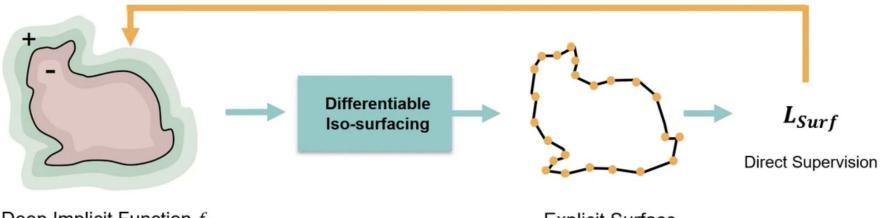


Deep Implicit Fields (DIFs) $f_{\theta}(x, y, z) \approx s(x, y, z)$

Cons:

 Requires costly, lossy and non-differentiable meshing step (such as marching cube)

Key Idea: Differentiable Iso-surfacing



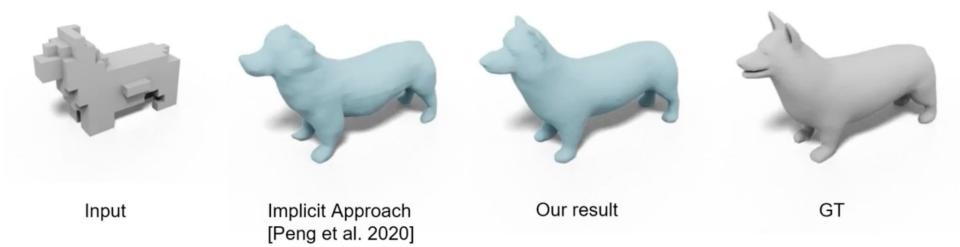
Deep Implicit Function f_{θ}

Explicit Surface

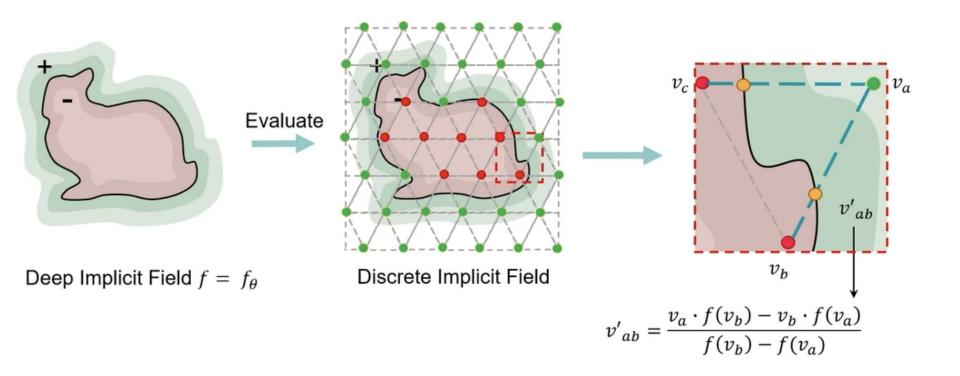
Optimizing f_{θ} for L_{Surf}

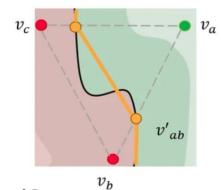
- Aware of quantization error from meshing
- Higher quality shapes with finer geometric details

Key Idea: Differentiable Iso-surfacing

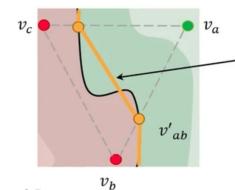


Marching Tetrahedra





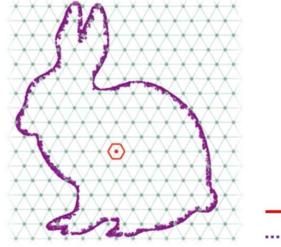
$$v'_{ab} = \frac{v_a \cdot f(v_b) - v_b \cdot f(v_a)}{f(v_b) - f(v_a)} \longrightarrow \text{Only evaluated at } \operatorname{sign}(f(v_b)) \neq \operatorname{sign}(f(v_a))$$



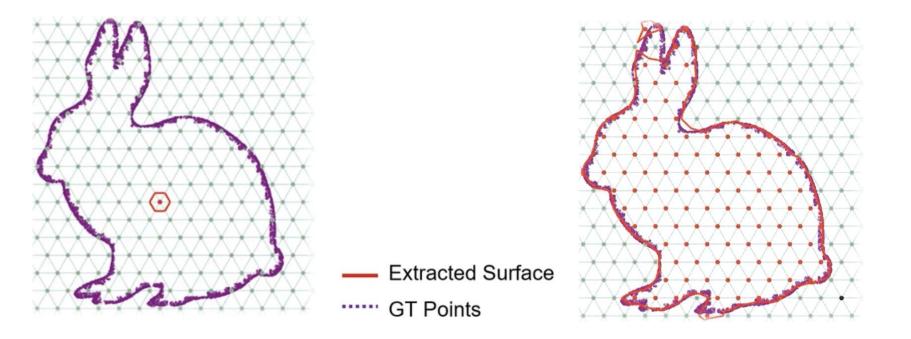
$$v'_{ab} = \frac{v_a \cdot f(v_b) - v_b \cdot f(v_a)}{f(v_b) - f(v_a)}$$

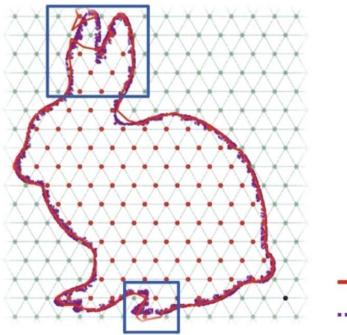
Backward Pass

 $L_{surf} = Loss \ defined \ on \ extracted \ surface \ \{v_{ij}\}$ $\frac{\partial L_{surf}}{\partial f(v_a)} = \frac{\partial L_{surf}}{\partial v'_{ab}} \frac{f(v_b)(v_a - v_b)}{(f(v_b) - f(v_a))^2}$



Extracted Surface
 GT Points

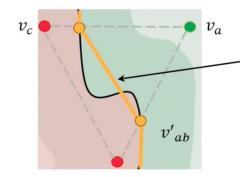




Lack of resolution

Extracted Surface

GT Points

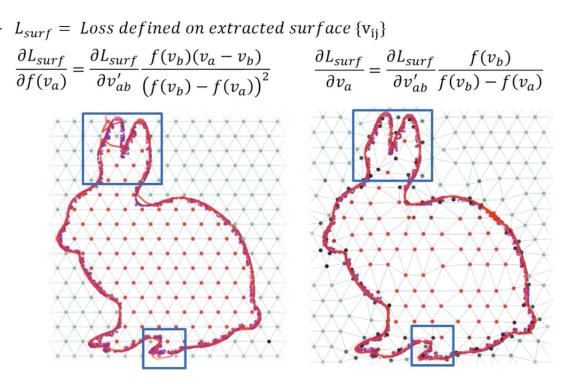


Forward Pass

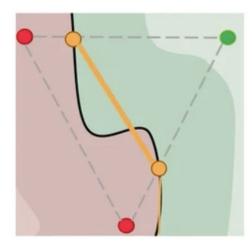
$$v'_{ab} = \frac{v_a \cdot f(v_b) - v_b \cdot f(v_a)}{f(v_b) - f(v_a)}$$

 v_b

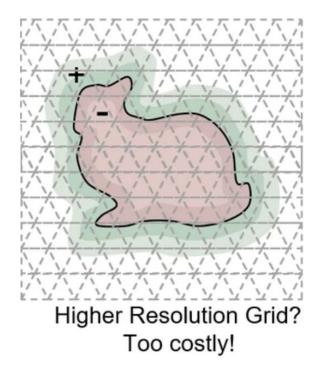
Backward Pass

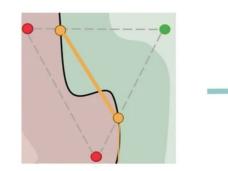


Optimizing grid deformation as in DefTet [Gao et al. 2020] learns better alignment with surface



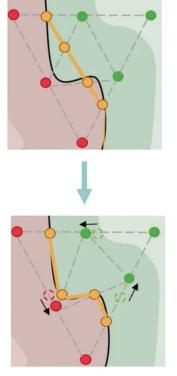
Bad approximation of local surface





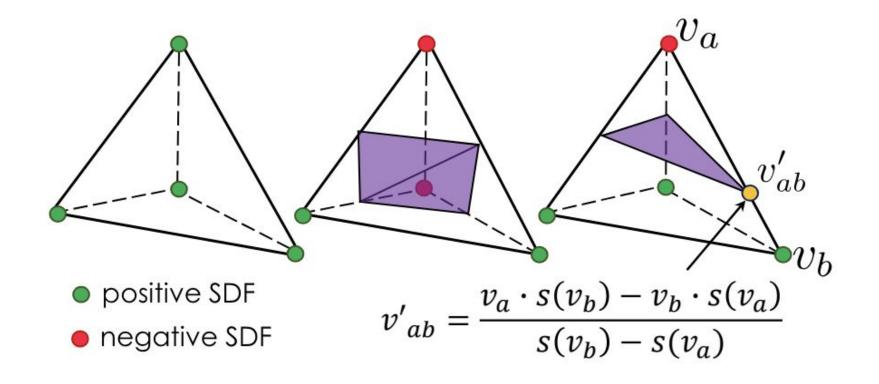
Bad approximation of local surface

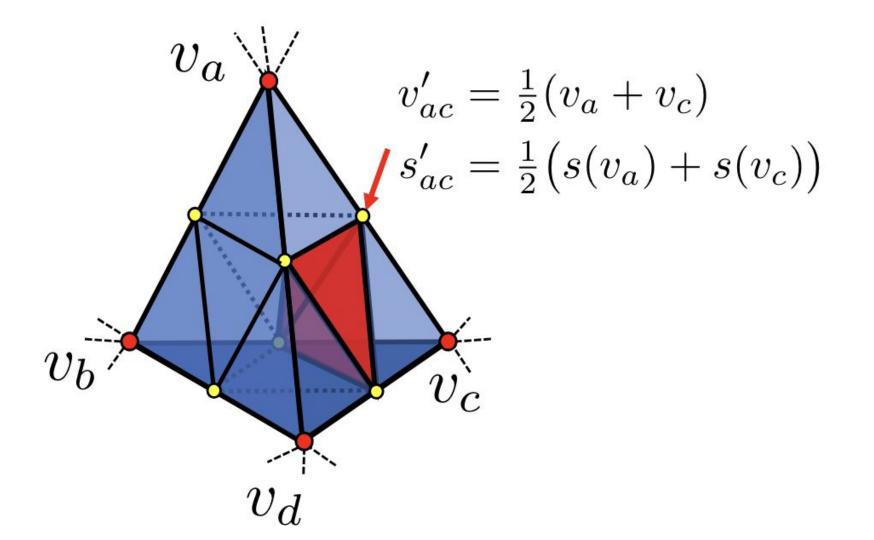
Only subdivide surface tets



Selective Volume Subdivision to replace the global high resolution grid, which is computationally inefficient

Local updates to positions and SDFs

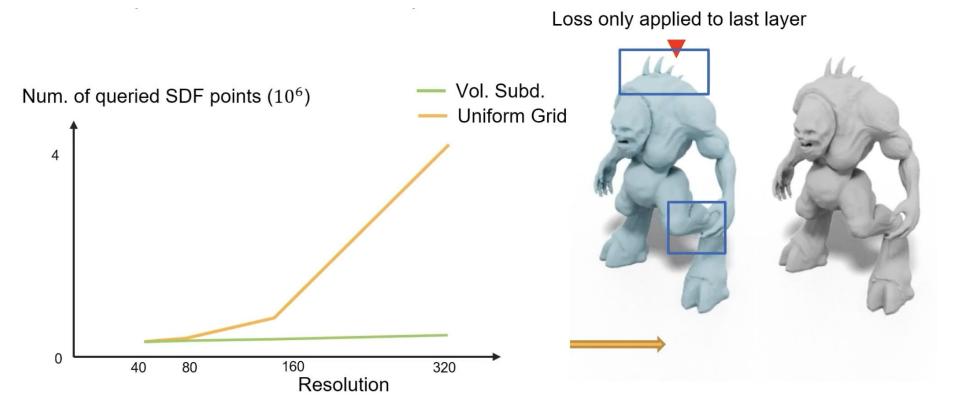




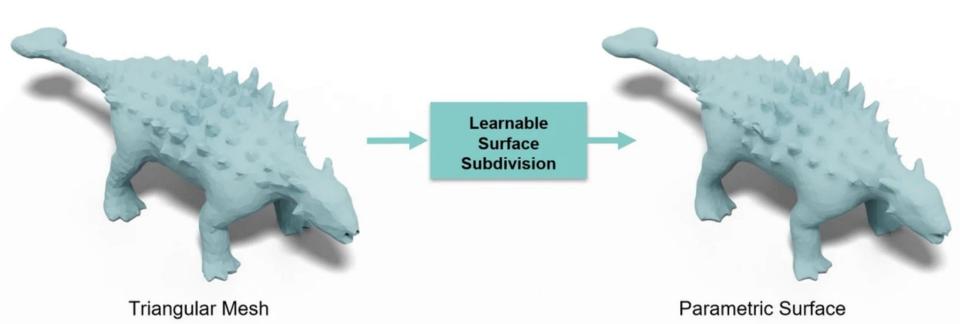
Automatically learns the subdivision hierarchy



Automatically learns the subdivision hierarchy

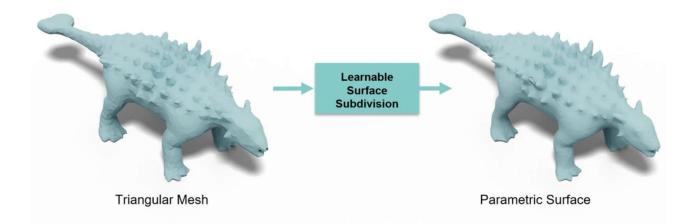


Surface Subdivision

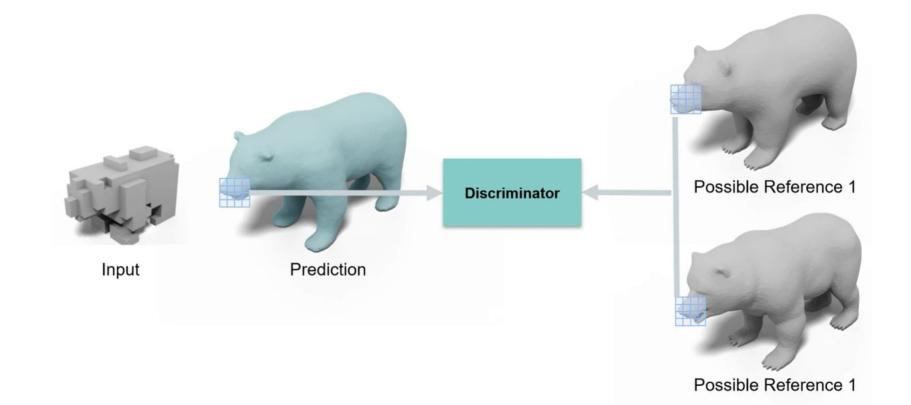


Surface Subdivision

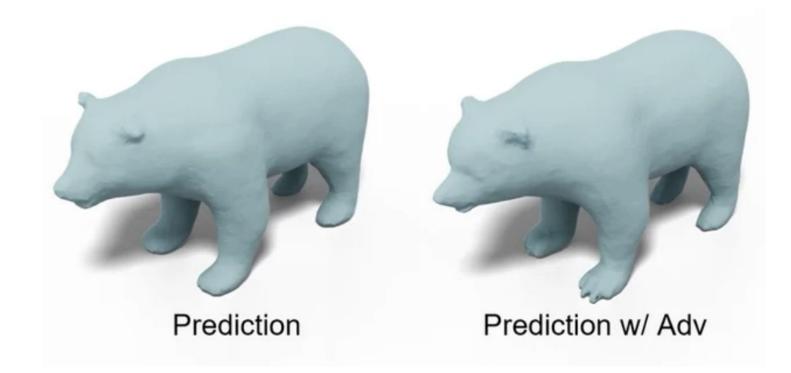
A learnable, fully differentiable surface subdivision algorithm.



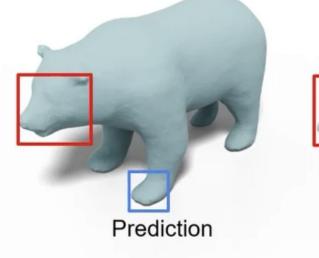
Reconstruction Loss Produces Mean Shape

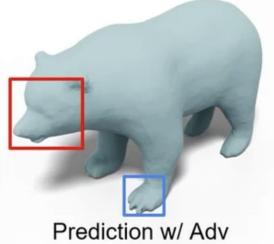


Reconstruction Loss Produces Mean Shape



Reconstruction Loss Produces Mean Shape

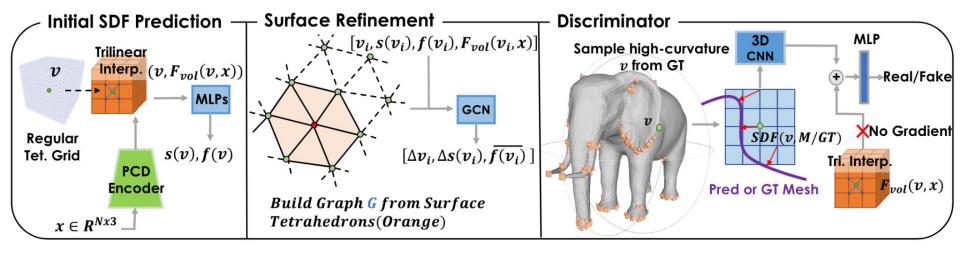




Deep Marching Tetrahedra



Deep Marching Tetrahedra



Loss Function

The loss function contains three different terms:

- a surface alignment loss to encourage the alignment with ground truth surface,
- an adversarial loss to improve realism of the generated shape
- regularizations to regularize the behavior of SDF and vertex deformations

Surface Alignment Loss

$$L_{cd} = \sum_{p \in P_{pred}} \min_{q \in P_{gt}} ||p - q||_2 + \sum_{q \in P_{gt}} \min_{p \in P_{pred}} ||q - p||_2, L_{normal} = \sum_{p \in P_{pred}} (1 - |\vec{\mathbf{n}}_p \cdot \vec{\mathbf{n}}_{\hat{q}}|)$$

Adversarial Loss

$$L_{\rm D} = \frac{1}{2} [(D(M_{gt}) - 1)^2 + D(M_{pred})^2], \ L_{\rm G} = \frac{1}{2} [(D(M_{pred}) - 1)^2].$$

Regularization

$$L_{\text{SDF}} = \sum_{v_i \in V_T} |s(v_i) - SDF(v_i, M_{gt})|^2$$

L2 Regularization Loss

$$L_{\text{def}} = \sum_{v_i \in V_T} ||\Delta v_i||_2$$

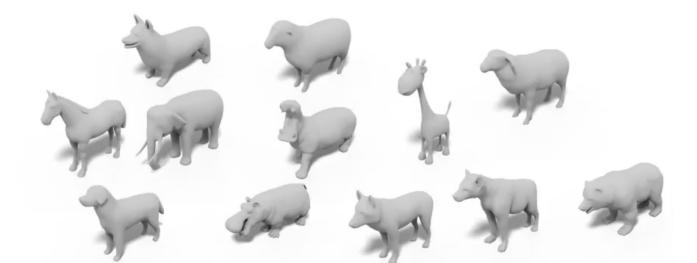
Final Loss

$$L = \lambda_{cd} L_{cd} + \lambda_{normal} L_{normal} + \lambda_{G} L_{G} + \lambda_{SDF} L_{SDF} + \lambda_{def} L_{def}$$

3D Shape Synthesis from Coarse Voxels

Animal Dataset collected from TurboSquid:

- 1562 high-quality animal models (1120 for training)
- Input: 16³ voxel downsampled from Mesh



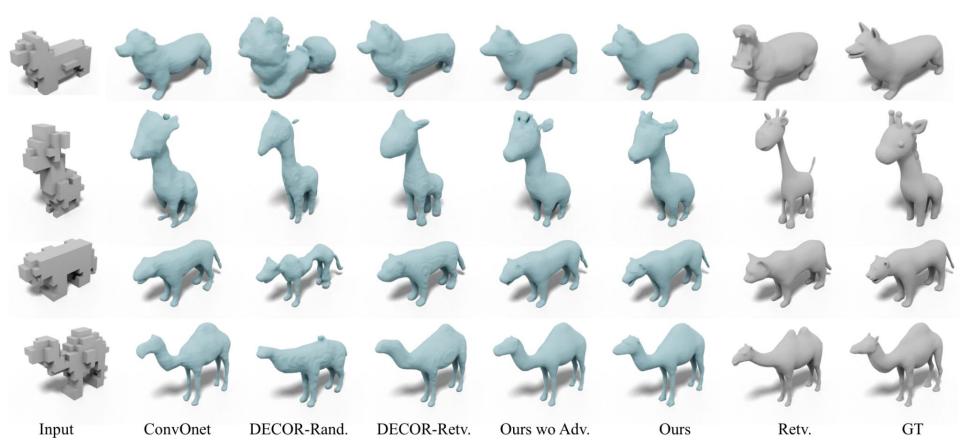
Generalization

Created by artist

Voxels used in training

Minecraft Shapes

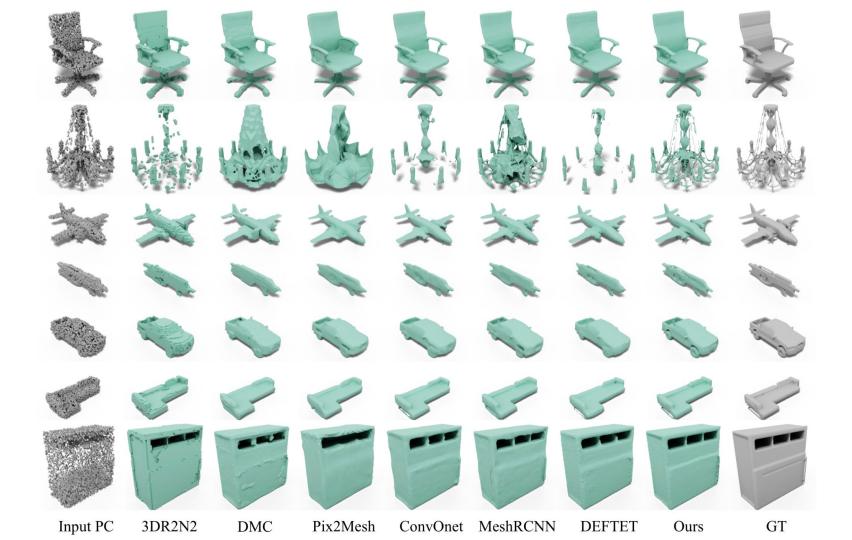
Super-resolution of Animal Shapes



Super-resolution of Animal Shapes

2 S	L2 Chamfer \downarrow	L1 Chamfer \downarrow	Norm. Cons. ↑	$LFD\downarrow$	$Cls \downarrow$
ConvOnet [44]	0.83	2.41	0.901	3220	0.63
DECOR [6]-Retv.	1.32	3.81	0.876	3689	0.66
DECOR [6]-Rand.	2.38	6.85	0.797	5338	0.67
DMTET wo Adv.	0.76	2.20	0.916	2846	0.58
DMTET	0.75	2.19	0.918	2823	0.54

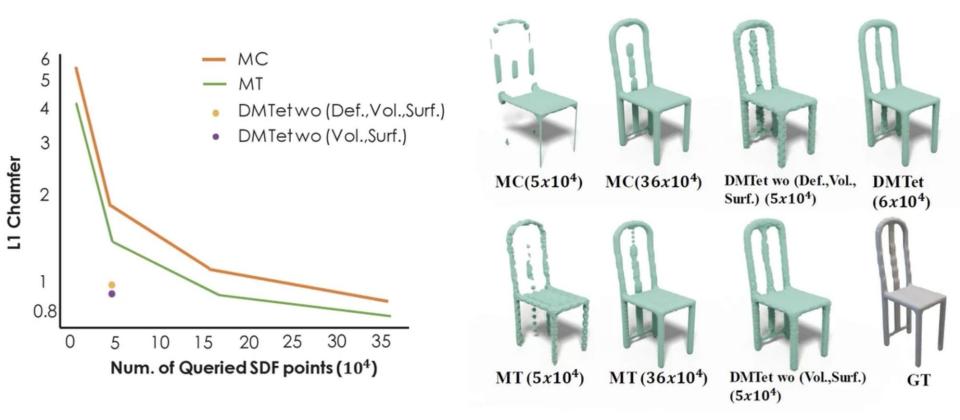
Super Resolution of Animal Shapes: DMTET significantly outperforms all baselines in all metrics.



Quantitative Results on Point Cloud Reconstruction

Category	Airplane	Bench	Dresser	Car	Chair	Display	Lamp	Speaker	Rifle	Sofa	Table	Phone	Vessel	Mean↓	Time (ms)↓
3D-R2N2 [10]	1.48	1.59	1.64	1.62	1.70	1.66	1.74	1.74	1.37	1.60	1.78	1.55	1.51	1.61	174
DMC [31]	1.57	1.47	1.29	1.67	1.44	1.25	2.15	1.49	1.45	1.19	1.33	0.88	1.70	1.45	349
Pixel2mesh [54]	0.98	1.28	1.44	1.19	1.91	1.25	2.07	1.61	0.91	1.15	1.82	0.83	1.12	1.35	30
ConvOnet [44]	0.82	0.95	0.96	1.12	1.03	0.93	1.22	1.12	0.79	0.91	0.94	0.67	0.99	0.95	866
MeshRCNN [22]	0.88	1.01	1.05	1.14	1.10	0.99	1.20	1.21	0.83	0.96	1.00	0.71	1.03	1.01	228
DEFTET [18]	0.85	0.94	0.97	1.13	1.04	0.92	1.28	1.17	0.85	0.90	0.93	0.65	0.99	0.97	61
DMTET wo (Def, Vol., Surf.)	0.82	0.96	0.94	0.98	0.99	0.90	1.04	1.03	0.80	0.86	0.93	0.65	0.89	0.91	52
DMTET wo (Vol., Surf.)	0.69	0.82	0.88	0.92	0.92	0.82	0.89	0.97	0.65	0.81	0.84	0.61	0.80	0.81	52
DMTET wo Vol.	0.65	0.78	0.84	0.89	0.89	0.79	0.86	0.95	0.61	0.78	0.79	0.60	0.78	0.79	67
DMTET wo Surf.	0.63	0.77	0.84	0.88	0.88	0.79	0.84	0.94	0.60	0.78	0.79	0.59	0.76	0.78	108
DMTET	0.62	0.76	0.83	0.87	0.88	0.78	0.84	0.94	0.59	0.77	0.78	0.57	0.76	0.77	129

Comparison with Oracle Performance of MC/MT



Broad Impact

Many fields such as AR/VR, robotics, architecture, gaming and film rely on high-quality 3D content.

Creating such content, however, requires human experts, i.e., experienced artists, and a significant amount of development time. In contrast, platforms like Minecraft enable millions of users around the world to carve out coarse shapes with simple blocks. This work aims at creating A.I. tools that would enable even novice users to upscale simple, low-resolution shapes into high resolution, beautiful 3D content.

Reference and Further Reading

- Towards Generative Modeling of 3D Objects Learned from Images | Toronto AIR Seminar
 - <u>https://www.youtube.com/watch?v=whXTP08XMYA</u>
- DMTet Kaolin Implementation
 - <u>https://github.com/NVIDIAGameWorks/kaolin/blob/master/examples/tutorial/dmtet_tutorial.ipyn</u>
 <u>b</u>
- Project Page
 - <u>https://research.nvidia.com/labs/toronto-ai/DMTet/</u>
- Paper
 - <u>https://research.nvidia.com/labs/toronto-ai/DMTet/assets/dmtet.pdf</u>